Digital twin-based structural health monitoring by combining measurement and computational data: An aircraft wing example

计算机科学 鉴定(生物学) 忠诚 计算 信息物理系统 数据挖掘 过程(计算) 绘图 计算机工程 人工智能 算法 植物 电信 生物 操作系统 计算机图形学(图像)
作者
Xiaonan Lai,Liangliang Yang,Xiwang He,Yong Pang,Xueguan Song,Wei Sun
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:69: 76-90 被引量:53
标识
DOI:10.1016/j.jmsy.2023.06.006
摘要

Digital twin is a concept that utilizes digital technologies to mirror the real-time states of physical assets and extract the hidden yet valuable information of physical assets for optimization, decision-making or scheduling. By combining measurement and computational data, this paper presents a digital twin-based structural health monitoring framework of physical assets. The process for building the measurement-computation combined digital twin (MCC-DT) involves four steps. First, an artificial intelligence-driven load identification method combining measurement and computational data is employed to recognize the loads applied on physical assets. Two approaches were proposed to realize load identification, based on single fidelity surrogate models and deep learning techniques, respectively. Second, multi-fidelity surrogate (MFS) models are applied to improve the accuracy in the MCC-DT. Two routes for implementing the MFS models are introduced and the advantages and shortcomings of both are analyzed. Third, an online rainflow counting algorithm is developed to calculate the degradation of the physical assets. The main advantage of the algorithm is that it can provide a near real-time estimation for the damage accumulated of physical assets. Finally, the data generated from the first three steps can be fused into a three-dimensional scene using Web graphics library to provide an intuitive view of the MCC-DT. To describe the implementation details of the framework and verify its applicability and effectiveness, the MCC-DT was established using an aircraft model as an example.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助zyq采纳,获得10
1秒前
yz发布了新的文献求助10
1秒前
今天也要开心呀完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
3秒前
koipolaris发布了新的文献求助30
3秒前
冬灵发布了新的文献求助10
3秒前
赘婿应助吴畅采纳,获得10
4秒前
4秒前
852应助落后的小猫咪采纳,获得10
5秒前
5秒前
现代萃发布了新的文献求助30
6秒前
会飞的蜗牛完成签到,获得积分10
6秒前
Lucas应助健康的幻珊采纳,获得10
7秒前
wyx发布了新的文献求助10
8秒前
NexusExplorer应助孤独的幻桃采纳,获得10
8秒前
8秒前
sun完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
zsw完成签到,获得积分10
10秒前
10秒前
天真绿完成签到,获得积分10
11秒前
任罗川完成签到,获得积分10
11秒前
88999发布了新的文献求助10
12秒前
华仔应助Satan采纳,获得10
12秒前
LTB发布了新的文献求助10
13秒前
kitty发布了新的文献求助10
14秒前
aloha01完成签到,获得积分10
15秒前
NexusExplorer应助忐忑的服饰采纳,获得10
17秒前
18秒前
寒冷勒完成签到,获得积分20
20秒前
思源应助LY采纳,获得10
21秒前
21秒前
koipolaris完成签到,获得积分10
21秒前
Orange应助cccc采纳,获得10
22秒前
after完成签到,获得积分10
22秒前
22秒前
寒冷勒发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537391
求助须知:如何正确求助?哪些是违规求助? 4624943
关于积分的说明 14593976
捐赠科研通 4565472
什么是DOI,文献DOI怎么找? 2502391
邀请新用户注册赠送积分活动 1480976
关于科研通互助平台的介绍 1452206