亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Digital twin-based structural health monitoring by combining measurement and computational data: An aircraft wing example

计算机科学 鉴定(生物学) 忠诚 计算 信息物理系统 数据挖掘 过程(计算) 绘图 计算机工程 人工智能 算法 计算机图形学(图像) 电信 植物 生物 操作系统
作者
Xiaonan Lai,Liangliang Yang,Xiwang He,Yong Pang,Xueguan Song,Wei Sun
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:69: 76-90 被引量:69
标识
DOI:10.1016/j.jmsy.2023.06.006
摘要

Digital twin is a concept that utilizes digital technologies to mirror the real-time states of physical assets and extract the hidden yet valuable information of physical assets for optimization, decision-making or scheduling. By combining measurement and computational data, this paper presents a digital twin-based structural health monitoring framework of physical assets. The process for building the measurement-computation combined digital twin (MCC-DT) involves four steps. First, an artificial intelligence-driven load identification method combining measurement and computational data is employed to recognize the loads applied on physical assets. Two approaches were proposed to realize load identification, based on single fidelity surrogate models and deep learning techniques, respectively. Second, multi-fidelity surrogate (MFS) models are applied to improve the accuracy in the MCC-DT. Two routes for implementing the MFS models are introduced and the advantages and shortcomings of both are analyzed. Third, an online rainflow counting algorithm is developed to calculate the degradation of the physical assets. The main advantage of the algorithm is that it can provide a near real-time estimation for the damage accumulated of physical assets. Finally, the data generated from the first three steps can be fused into a three-dimensional scene using Web graphics library to provide an intuitive view of the MCC-DT. To describe the implementation details of the framework and verify its applicability and effectiveness, the MCC-DT was established using an aircraft model as an example.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
21秒前
Beyond095完成签到 ,获得积分10
24秒前
种下梧桐树完成签到 ,获得积分10
31秒前
无情的鹭洋完成签到,获得积分10
52秒前
yuanling完成签到 ,获得积分10
1分钟前
1分钟前
吴迪发布了新的文献求助10
1分钟前
田様应助苏亚婷采纳,获得10
1分钟前
闫闫完成签到 ,获得积分10
2分钟前
Nancy0818完成签到 ,获得积分10
2分钟前
乐乐应助lalkiii采纳,获得10
2分钟前
852应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
852应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
2分钟前
lalkiii发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大模型应助杨惠子采纳,获得10
2分钟前
2分钟前
杨惠子发布了新的文献求助10
3分钟前
杨惠子完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
菜菜完成签到 ,获得积分10
4分钟前
5分钟前
苏亚婷发布了新的文献求助10
5分钟前
点点点完成签到 ,获得积分10
5分钟前
hahasun发布了新的文献求助10
6分钟前
6分钟前
斯文败类应助苏亚婷采纳,获得10
6分钟前
7分钟前
怕孤独的海秋完成签到,获得积分10
7分钟前
7分钟前
7分钟前
科研通AI2S应助吴迪采纳,获得10
7分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845406
求助须知:如何正确求助?哪些是违规求助? 6202404
关于积分的说明 15616421
捐赠科研通 4962230
什么是DOI,文献DOI怎么找? 2675328
邀请新用户注册赠送积分活动 1620094
关于科研通互助平台的介绍 1575413