Digital twin-based structural health monitoring by combining measurement and computational data: An aircraft wing example

计算机科学 鉴定(生物学) 忠诚 计算 信息物理系统 结构健康监测 数据挖掘 过程(计算) 计算机工程 人工智能 算法 工程类 电信 植物 生物 操作系统 结构工程
作者
Xiaonan Lai,Liangliang Yang,Xiwang He,Yong Jie Pang,Xueguan Song,Wei Sun
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:69: 76-90 被引量:23
标识
DOI:10.1016/j.jmsy.2023.06.006
摘要

Digital twin is a concept that utilizes digital technologies to mirror the real-time states of physical assets and extract the hidden yet valuable information of physical assets for optimization, decision-making or scheduling. By combining measurement and computational data, this paper presents a digital twin-based structural health monitoring framework of physical assets. The process for building the measurement-computation combined digital twin (MCC-DT) involves four steps. First, an artificial intelligence-driven load identification method combining measurement and computational data is employed to recognize the loads applied on physical assets. Two approaches were proposed to realize load identification, based on single fidelity surrogate models and deep learning techniques, respectively. Second, multi-fidelity surrogate (MFS) models are applied to improve the accuracy in the MCC-DT. Two routes for implementing the MFS models are introduced and the advantages and shortcomings of both are analyzed. Third, an online rainflow counting algorithm is developed to calculate the degradation of the physical assets. The main advantage of the algorithm is that it can provide a near real-time estimation for the damage accumulated of physical assets. Finally, the data generated from the first three steps can be fused into a three-dimensional scene using Web graphics library to provide an intuitive view of the MCC-DT. To describe the implementation details of the framework and verify its applicability and effectiveness, the MCC-DT was established using an aircraft model as an example.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
limh完成签到,获得积分10
1秒前
1秒前
phobeeee完成签到 ,获得积分10
1秒前
自然1111发布了新的文献求助10
1秒前
q1356478314应助田济采纳,获得10
2秒前
胡图图完成签到,获得积分10
2秒前
2秒前
吕方完成签到,获得积分10
2秒前
4秒前
L-g-b完成签到,获得积分10
4秒前
杨多多完成签到,获得积分10
4秒前
LLLLLL完成签到,获得积分10
4秒前
www完成签到,获得积分10
5秒前
lenon发布了新的文献求助10
5秒前
1111发布了新的文献求助10
6秒前
7秒前
机智傀斗完成签到,获得积分10
7秒前
善良天抒完成签到 ,获得积分20
7秒前
宇宙中心发布了新的文献求助10
7秒前
小蘑菇应助吕方采纳,获得10
7秒前
夙夙发布了新的文献求助10
8秒前
TP完成签到,获得积分10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得30
9秒前
916应助科研通管家采纳,获得10
9秒前
Bio应助felix采纳,获得50
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
Bio应助科研通管家采纳,获得10
9秒前
GEeZiii发布了新的文献求助10
9秒前
916应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
ED应助科研通管家采纳,获得10
9秒前
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
lucyliu完成签到 ,获得积分10
9秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650