Digital twin-based structural health monitoring by combining measurement and computational data: An aircraft wing example

计算机科学 鉴定(生物学) 忠诚 计算 信息物理系统 数据挖掘 过程(计算) 绘图 计算机工程 人工智能 算法 植物 电信 生物 操作系统 计算机图形学(图像)
作者
Xiaonan Lai,Liangliang Yang,Xiwang He,Yong Pang,Xueguan Song,Wei Sun
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:69: 76-90 被引量:53
标识
DOI:10.1016/j.jmsy.2023.06.006
摘要

Digital twin is a concept that utilizes digital technologies to mirror the real-time states of physical assets and extract the hidden yet valuable information of physical assets for optimization, decision-making or scheduling. By combining measurement and computational data, this paper presents a digital twin-based structural health monitoring framework of physical assets. The process for building the measurement-computation combined digital twin (MCC-DT) involves four steps. First, an artificial intelligence-driven load identification method combining measurement and computational data is employed to recognize the loads applied on physical assets. Two approaches were proposed to realize load identification, based on single fidelity surrogate models and deep learning techniques, respectively. Second, multi-fidelity surrogate (MFS) models are applied to improve the accuracy in the MCC-DT. Two routes for implementing the MFS models are introduced and the advantages and shortcomings of both are analyzed. Third, an online rainflow counting algorithm is developed to calculate the degradation of the physical assets. The main advantage of the algorithm is that it can provide a near real-time estimation for the damage accumulated of physical assets. Finally, the data generated from the first three steps can be fused into a three-dimensional scene using Web graphics library to provide an intuitive view of the MCC-DT. To describe the implementation details of the framework and verify its applicability and effectiveness, the MCC-DT was established using an aircraft model as an example.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动物朋友们完成签到,获得积分10
1秒前
上官若男应助悦耳的书雪采纳,获得10
1秒前
3秒前
henglu完成签到,获得积分10
3秒前
大模型应助Ksharp10采纳,获得10
3秒前
追寻的纸鹤完成签到 ,获得积分10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
叮叮当当完成签到,获得积分10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
123应助科研通管家采纳,获得30
3秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
三月完成签到,获得积分10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
娜娜完成签到 ,获得积分10
4秒前
阿桁完成签到,获得积分10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
GLN完成签到,获得积分10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得20
4秒前
luxkex完成签到,获得积分10
4秒前
华仔应助科研通管家采纳,获得20
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
慕青应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348298
求助须知:如何正确求助?哪些是违规求助? 4482432
关于积分的说明 13950813
捐赠科研通 4381161
什么是DOI,文献DOI怎么找? 2407200
邀请新用户注册赠送积分活动 1399822
关于科研通互助平台的介绍 1373090