催化作用
光催化
纳米颗粒
激进的
羟基自由基
化学
歧化
双酚A
光化学
无机化学
化学工程
材料科学
纳米技术
有机化学
工程类
环氧树脂
作者
Andraž Šuligoj,Ivalina Trendafilova,Ksenija Maver,Albin Pintar,Alenka Ristić,Goran Dražić,Wael H.M. Abdelraheem,Zvonko Jagličić,Iztok Arčon,Nataša Zabukovec Logar,Dionysios D. Dionysiou,Nataša Novak Tušar
标识
DOI:10.1016/j.jece.2023.110369
摘要
Removal of contaminants of emerging concern (CEC) from water is a serious problem. Using sunlight to assist in this process is one of the most sustainable methods for water treatment. In this study, we demonstrate that tailoring the morphology and optimizing the metal concentration in the multicomponent catalysts through an appropriate synthetic strategy leads to Fenton-like and photo-Fenton-like systems capable of effectively degrading bisphenol A and coumarin as model endocrine disruptors and coumarin as a probe for •OH detection. Multicomponent Cu-Mn-Fe silica supported catalysts were prepared via direct synthesis by incorporating magnetic Fe3O4 nanoparticles, Mn and Cu during the formation of silica nanoparticles with interparticle mesoporosity. Comprehensive characterization by advanced microscopic and spectroscopic techniques revealed qualitatively and quantitatively the presence of magnetic Fe oxides covered with the silica support, isolated Mn cations/oxo species into silica framework and CuO particles attached to the silica framework. The Fenton-like activities of the catalysts are due to the catalytic disproportionation of H2O2 by Cu2+ species and isolated Mn species in the silica support. The investigated catalysts are efficient concerning the homolytic cleavage of H2O2 to hydroxyl radicals, with a further positive effect of hydroxyl radical formation observed under visible-light illumination thus acting as photo-Fenton-like catalysts. Fe oxides with magnetic properties are used for easy separation of the catalyst/photocatalyst after the reaction and do not contribute to the catalytic/photocatalytic performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI