A Novel Dual‐Loop Model‐Free Adaptive Iterative Learning Control and Its Application to the Refrigeration Systems

迭代学习控制 对偶(语法数字) 计算机科学 控制理论(社会学) 循环(图论) 控制工程 控制(管理) 工程类 数学 人工智能 艺术 文学类 组合数学
作者
Norasyikin Ibrahim,Na Dong
出处
期刊:International Journal of Robust and Nonlinear Control [Wiley]
标识
DOI:10.1002/rnc.7790
摘要

ABSTRACT This study investigates a novel dual‐input and dual‐output Model‐Free Adaptive Iterative Learning Control (A‐MFAILC) approach for energy‐saving control of refrigeration systems, aiming to maintain a minimum stable superheat and a constant evaporation temperature. Superheat control is often unstable due to the complex and high‐order nature of refrigeration systems. Furthermore, these systems often face large time delays, which complicate the tracking control process. Such delays can cause inefficiencies and instability in maintaining desired operational parameters, making it challenging to achieve energy savings. To get around these problems, a novel Model‐Free Adaptive Iterative Learning Control algorithm has been proposed by incorporating input rate constraints for time‐delayed systems.The proposed A‐MFAILC algorithm with a single input and single output has been extended to dual input and dual output energy‐saving control of refrigeration systems. Complete proofs of convergence analysis have been provided, and the algorithm's performance has been fully evaluated. Simulation tests based on the proposed A‐MFAILC algorithm, developed for dual‐loop control systems, have been conducted on refrigeration systems. Step signals have been used as input signals for comprehensive performance testing. As a result, the proposed approach demonstrates higher tracking stability and fast response speed, with an average tracking accuracy of 98.68% and 93.87% for superheat and evaporation temperature, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小朱完成签到,获得积分10
1秒前
陈一一完成签到 ,获得积分10
1秒前
纸芯完成签到 ,获得积分10
2秒前
NINI完成签到 ,获得积分10
2秒前
蜂鸟5156完成签到,获得积分10
2秒前
溜溜发布了新的文献求助10
4秒前
VDC发布了新的文献求助10
5秒前
Lyuemei完成签到 ,获得积分10
6秒前
恬恬完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
热依汗古丽完成签到,获得积分10
8秒前
HX发布了新的文献求助20
8秒前
9秒前
qian完成签到 ,获得积分10
10秒前
10秒前
Zzzzzzzzzzz发布了新的文献求助10
11秒前
11秒前
11秒前
典雅的果汁完成签到,获得积分20
13秒前
Laus完成签到,获得积分20
14秒前
搜集达人应助gzsy采纳,获得10
14秒前
俭朴夜雪发布了新的文献求助10
14秒前
Hello应助橙橙梨梨茶采纳,获得10
15秒前
认真的rain发布了新的文献求助50
16秒前
深情的鑫鹏完成签到,获得积分10
16秒前
寒涛先生发布了新的文献求助10
17秒前
空心发布了新的文献求助30
17秒前
希望天下0贩的0应助星星采纳,获得10
18秒前
krkr完成签到,获得积分10
18秒前
18秒前
18秒前
科研通AI5应助111111111采纳,获得10
19秒前
19秒前
粗犷的书包完成签到,获得积分10
20秒前
Jasper应助shanbaibai采纳,获得10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808