A Novel Dual‐Loop Model‐Free Adaptive Iterative Learning Control and Its Application to the Refrigeration Systems

迭代学习控制 对偶(语法数字) 计算机科学 控制理论(社会学) 循环(图论) 控制工程 控制(管理) 工程类 数学 人工智能 艺术 文学类 组合数学
作者
Norasyikin Ibrahim,Na Dong
出处
期刊:International Journal of Robust and Nonlinear Control [Wiley]
标识
DOI:10.1002/rnc.7790
摘要

ABSTRACT This study investigates a novel dual‐input and dual‐output Model‐Free Adaptive Iterative Learning Control (A‐MFAILC) approach for energy‐saving control of refrigeration systems, aiming to maintain a minimum stable superheat and a constant evaporation temperature. Superheat control is often unstable due to the complex and high‐order nature of refrigeration systems. Furthermore, these systems often face large time delays, which complicate the tracking control process. Such delays can cause inefficiencies and instability in maintaining desired operational parameters, making it challenging to achieve energy savings. To get around these problems, a novel Model‐Free Adaptive Iterative Learning Control algorithm has been proposed by incorporating input rate constraints for time‐delayed systems.The proposed A‐MFAILC algorithm with a single input and single output has been extended to dual input and dual output energy‐saving control of refrigeration systems. Complete proofs of convergence analysis have been provided, and the algorithm's performance has been fully evaluated. Simulation tests based on the proposed A‐MFAILC algorithm, developed for dual‐loop control systems, have been conducted on refrigeration systems. Step signals have been used as input signals for comprehensive performance testing. As a result, the proposed approach demonstrates higher tracking stability and fast response speed, with an average tracking accuracy of 98.68% and 93.87% for superheat and evaporation temperature, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孤独豪英发布了新的文献求助10
刚刚
刚刚
GUO完成签到 ,获得积分10
1秒前
1秒前
1秒前
在水一方应助威武雅阳采纳,获得30
1秒前
yar应助科研通管家采纳,获得10
1秒前
pcr163应助科研通管家采纳,获得50
1秒前
鑫鑫完成签到,获得积分20
1秒前
pluto应助科研通管家采纳,获得30
1秒前
kid1912应助科研通管家采纳,获得20
2秒前
甜甜玫瑰应助科研通管家采纳,获得10
2秒前
正直的飞瑶完成签到,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
吖嘿吖嘿发布了新的文献求助10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得30
2秒前
正午发布了新的文献求助30
2秒前
甜甜玫瑰应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
搜集达人应助虚幻过客采纳,获得10
2秒前
宋雪芹完成签到,获得积分10
3秒前
3秒前
Suzzne完成签到,获得积分10
3秒前
南有乔木完成签到,获得积分10
3秒前
hexinyu发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
方正发布了新的文献求助10
5秒前
5秒前
王强完成签到,获得积分10
6秒前
6秒前
陈大咩完成签到,获得积分10
7秒前
chentle发布了新的文献求助10
7秒前
NexusExplorer应助cmc12314采纳,获得10
8秒前
飞飞完成签到,获得积分10
8秒前
宋雪芹发布了新的文献求助10
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300598
求助须知:如何正确求助?哪些是违规求助? 2935414
关于积分的说明 8473048
捐赠科研通 2609116
什么是DOI,文献DOI怎么找? 1424455
科研通“疑难数据库(出版商)”最低求助积分说明 662039
邀请新用户注册赠送积分活动 645815