Oral microbiota as a biomarker for predicting the risk of malignancy in indeterminate pulmonary nodules: a prospective multicenter study

医学 生物标志物 唾液 恶性肿瘤 内科学 前瞻性队列研究 降钙素原 普雷沃菌属 癌症 胃肠病学 肿瘤科 病理 生物 败血症 生物化学 遗传学 细菌
作者
Qiong Ma,Chun-Xia Huang,Jiawei He,Xiao Zeng,Yingming Qu,Hongxia Xiang,Zhong Yang,Lei Mao,Ruyi Zheng,Junjie Xiao,Yuling Jiang,Shi-Yan Tan,Ping Xiao,Xiang Zhuang,Liting You,Xi Fu,Yifeng Ren,C. Zheng,Fengming You
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002152
摘要

Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN. Materials and Methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals. Following up, the IPNs were diagnosed as benign (BPN) or malignant pulmonary nodules (MPN). Through 16S rRNA sequencing, bioinformatics analysis, fluorescence in situ hybridization (FISH), and seven machine learning algorithms (support vector machine, logistic regression, naïve bayes, multi-layer perceptron, random forest, gradient-boosting decision tree, and LightGBM), we revealed the oral microbiota characteristics at different stages of HC-BPN-MPN, identified the sample types with the highest predictive potential, constructed and evaluated the optimal MPN prediction model for predictive efficacy, and determined microbial biomarkers. Additionally, based on the SHAP algorithm interpretation of the ML model’s output, we have developed a visualized IPN risk prediction system on the web. Results: Saliva, tongue coating, and throat swab microbiotas exhibit site-specific characteristics, with saliva microbiota being the optimal sample type for disease prediction. The saliva-LightGBM model demonstrated the best predictive performance (AUC = 0.887, 95%CI: 0.865-0.918), and identified Actinomyces, Rothia, Streptococcus, Prevotella, Porphyromonas , and Veillonella as biomarkers for predicting MPN. FISH was used to confirm the presence of a microbiota within tumors, and external data from a lung cancer cohort, along with three non-IPN disease cohorts, were employed to validate the specificity of the microbial biomarkers. Notably, coabundance analysis of the ecological network revealed that microbial biomarkers exhibit richer interspecies connections within the MPN, which may contribute to the pathogenesis of MPN. Conclusion: This study presents a new predictive strategy for the clinic to determine MPNs from BPNs, which aids in the surgical decision-making for IPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linp发布了新的文献求助10
4秒前
6秒前
真实的采白完成签到 ,获得积分10
6秒前
脚踏实地i发布了新的文献求助10
9秒前
10秒前
suzhenyue发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
xiaojie完成签到,获得积分10
12秒前
14秒前
14秒前
研究生完成签到 ,获得积分10
15秒前
Elon完成签到,获得积分20
15秒前
迅速日记本完成签到,获得积分10
18秒前
学时习完成签到,获得积分10
19秒前
脚踏实地i完成签到,获得积分10
19秒前
orixero应助wh雨采纳,获得10
20秒前
20秒前
20秒前
fancyiii关注了科研通微信公众号
24秒前
传奇3应助义气的碧玉采纳,获得10
25秒前
25秒前
神猪无敌发布了新的文献求助10
26秒前
26秒前
orixero应助现代的小馒头采纳,获得10
26秒前
27秒前
kjl发布了新的文献求助10
27秒前
阿司匹林完成签到,获得积分10
28秒前
我是老大应助李滔采纳,获得10
28秒前
科目三应助哈理老萝卜采纳,获得10
29秒前
喵了个咪发布了新的文献求助10
30秒前
武昂王发布了新的文献求助10
32秒前
32秒前
34秒前
35秒前
37秒前
cxq完成签到 ,获得积分10
39秒前
40秒前
我是谁发布了新的文献求助10
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843046
求助须知:如何正确求助?哪些是违规求助? 3385224
关于积分的说明 10539514
捐赠科研通 3105791
什么是DOI,文献DOI怎么找? 1710642
邀请新用户注册赠送积分活动 823719
科研通“疑难数据库(出版商)”最低求助积分说明 774205