清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Oral microbiota as a biomarker for predicting the risk of malignancy in indeterminate pulmonary nodules: a prospective multicenter study

医学 生物标志物 唾液 恶性肿瘤 内科学 前瞻性队列研究 降钙素原 普雷沃菌属 癌症 胃肠病学 肿瘤科 病理 生物 败血症 细菌 生物化学 遗传学
作者
Qiong Ma,Chunxia Huang,Jiawei He,Xiao Zeng,Yingming Qu,Hongxia Xiang,Zhong Yang,Lei Mao,Ruyi Zheng,Junjie Xiao,Yuling Jiang,Shi-Yan Tan,Ping Xiao,Xiang Zhuang,Liting You,Xi Fu,Yifeng Ren,C. Zheng,Fengming You
出处
期刊:International Journal of Surgery [Elsevier]
被引量:5
标识
DOI:10.1097/js9.0000000000002152
摘要

Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN. Materials and Methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals. Following up, the IPNs were diagnosed as benign (BPN) or malignant pulmonary nodules (MPN). Through 16S rRNA sequencing, bioinformatics analysis, fluorescence in situ hybridization (FISH), and seven machine learning algorithms (support vector machine, logistic regression, naïve bayes, multi-layer perceptron, random forest, gradient-boosting decision tree, and LightGBM), we revealed the oral microbiota characteristics at different stages of HC-BPN-MPN, identified the sample types with the highest predictive potential, constructed and evaluated the optimal MPN prediction model for predictive efficacy, and determined microbial biomarkers. Additionally, based on the SHAP algorithm interpretation of the ML model’s output, we have developed a visualized IPN risk prediction system on the web. Results: Saliva, tongue coating, and throat swab microbiotas exhibit site-specific characteristics, with saliva microbiota being the optimal sample type for disease prediction. The saliva-LightGBM model demonstrated the best predictive performance (AUC = 0.887, 95%CI: 0.865-0.918), and identified Actinomyces, Rothia, Streptococcus, Prevotella, Porphyromonas , and Veillonella as biomarkers for predicting MPN. FISH was used to confirm the presence of a microbiota within tumors, and external data from a lung cancer cohort, along with three non-IPN disease cohorts, were employed to validate the specificity of the microbial biomarkers. Notably, coabundance analysis of the ecological network revealed that microbial biomarkers exhibit richer interspecies connections within the MPN, which may contribute to the pathogenesis of MPN. Conclusion: This study presents a new predictive strategy for the clinic to determine MPNs from BPNs, which aids in the surgical decision-making for IPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助xuan2022采纳,获得10
5秒前
8秒前
8秒前
追梦发布了新的文献求助10
12秒前
BowieHuang完成签到,获得积分10
16秒前
Syan完成签到,获得积分10
17秒前
prrrratt完成签到,获得积分10
17秒前
洋芋饭饭完成签到,获得积分10
17秒前
runtang完成签到,获得积分10
17秒前
清水完成签到,获得积分10
18秒前
文献蚂蚁完成签到,获得积分10
18秒前
喜喜完成签到,获得积分10
18秒前
zwzw完成签到,获得积分10
18秒前
王jyk完成签到,获得积分10
18秒前
呵呵哒完成签到,获得积分10
19秒前
搬砖的化学男完成签到 ,获得积分10
19秒前
CGBIO完成签到,获得积分10
20秒前
真的OK完成签到,获得积分10
20秒前
Temperature完成签到,获得积分10
21秒前
张浩林完成签到,获得积分10
21秒前
yzz完成签到,获得积分10
21秒前
qq完成签到,获得积分10
21秒前
BMG完成签到,获得积分10
21秒前
ys1008完成签到,获得积分10
21秒前
朝夕之晖完成签到,获得积分10
21秒前
啪嗒大白球完成签到,获得积分10
22秒前
cityhunter7777完成签到,获得积分10
22秒前
美满惜寒完成签到,获得积分10
22秒前
lx完成签到,获得积分10
22秒前
oleskarabach发布了新的文献求助10
26秒前
追梦完成签到,获得积分10
27秒前
34秒前
40秒前
愤怒的念蕾完成签到,获得积分10
51秒前
CodeCraft应助内向的昊焱采纳,获得30
1分钟前
1分钟前
25678987654发布了新的文献求助10
1分钟前
smin完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5314725
求助须知:如何正确求助?哪些是违规求助? 4457640
关于积分的说明 13868162
捐赠科研通 4347036
什么是DOI,文献DOI怎么找? 2387475
邀请新用户注册赠送积分活动 1381642
关于科研通互助平台的介绍 1350660