Oral microbiota as a biomarker for predicting the risk of malignancy in indeterminate pulmonary nodules: a prospective multicenter study

医学 生物标志物 唾液 恶性肿瘤 内科学 前瞻性队列研究 降钙素原 普雷沃菌属 癌症 胃肠病学 肿瘤科 病理 生物 败血症 细菌 生物化学 遗传学
作者
Qiong Ma,Chunxia Huang,Jiawei He,Xiao Zeng,Yingming Qu,Hongxia Xiang,Zhong Yang,Lei Mao,Ruyi Zheng,Junjie Xiao,Yuling Jiang,Shi-Yan Tan,Ping Xiao,Xiang Zhuang,Liting You,Xi Fu,Yifeng Ren,C. Zheng,Fengming You
出处
期刊:International Journal of Surgery [Elsevier]
被引量:5
标识
DOI:10.1097/js9.0000000000002152
摘要

Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN. Materials and Methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals. Following up, the IPNs were diagnosed as benign (BPN) or malignant pulmonary nodules (MPN). Through 16S rRNA sequencing, bioinformatics analysis, fluorescence in situ hybridization (FISH), and seven machine learning algorithms (support vector machine, logistic regression, naïve bayes, multi-layer perceptron, random forest, gradient-boosting decision tree, and LightGBM), we revealed the oral microbiota characteristics at different stages of HC-BPN-MPN, identified the sample types with the highest predictive potential, constructed and evaluated the optimal MPN prediction model for predictive efficacy, and determined microbial biomarkers. Additionally, based on the SHAP algorithm interpretation of the ML model’s output, we have developed a visualized IPN risk prediction system on the web. Results: Saliva, tongue coating, and throat swab microbiotas exhibit site-specific characteristics, with saliva microbiota being the optimal sample type for disease prediction. The saliva-LightGBM model demonstrated the best predictive performance (AUC = 0.887, 95%CI: 0.865-0.918), and identified Actinomyces, Rothia, Streptococcus, Prevotella, Porphyromonas , and Veillonella as biomarkers for predicting MPN. FISH was used to confirm the presence of a microbiota within tumors, and external data from a lung cancer cohort, along with three non-IPN disease cohorts, were employed to validate the specificity of the microbial biomarkers. Notably, coabundance analysis of the ecological network revealed that microbial biomarkers exhibit richer interspecies connections within the MPN, which may contribute to the pathogenesis of MPN. Conclusion: This study presents a new predictive strategy for the clinic to determine MPNs from BPNs, which aids in the surgical decision-making for IPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研民工完成签到,获得积分10
2秒前
liujianxin完成签到,获得积分20
3秒前
开朗若之完成签到 ,获得积分10
3秒前
郑成灿完成签到 ,获得积分10
4秒前
无一完成签到 ,获得积分0
4秒前
wuli林完成签到,获得积分10
5秒前
文献求助完成签到,获得积分10
5秒前
哦哦完成签到,获得积分10
8秒前
浮游应助carbonhan采纳,获得10
9秒前
ataybabdallah完成签到,获得积分10
9秒前
轻松的鸿煊完成签到 ,获得积分10
10秒前
踏实的盼秋完成签到 ,获得积分10
11秒前
11秒前
朱妮妮完成签到,获得积分10
12秒前
小包子完成签到,获得积分10
13秒前
兴奋路人完成签到,获得积分10
14秒前
14秒前
CX330发布了新的文献求助30
15秒前
清修发布了新的文献求助10
16秒前
Ali完成签到,获得积分10
16秒前
HuiJN完成签到 ,获得积分10
16秒前
半生完成签到 ,获得积分10
18秒前
刘汉淼完成签到,获得积分10
20秒前
安心完成签到 ,获得积分10
21秒前
行舟完成签到,获得积分10
21秒前
清新的易真完成签到,获得积分10
21秒前
莫等闲完成签到,获得积分10
21秒前
i羽翼深蓝i完成签到,获得积分10
22秒前
carbonhan完成签到,获得积分10
22秒前
可靠雅青完成签到 ,获得积分10
22秒前
YangSY完成签到,获得积分10
23秒前
wyt完成签到,获得积分20
24秒前
Leo完成签到,获得积分10
24秒前
cccr完成签到 ,获得积分10
24秒前
25秒前
25秒前
务实的一斩完成签到 ,获得积分10
25秒前
HiDasiy完成签到 ,获得积分10
26秒前
修辛完成签到 ,获得积分10
27秒前
伊笙完成签到 ,获得积分0
29秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347734
求助须知:如何正确求助?哪些是违规求助? 4482003
关于积分的说明 13948481
捐赠科研通 4380368
什么是DOI,文献DOI怎么找? 2406916
邀请新用户注册赠送积分活动 1399501
关于科研通互助平台的介绍 1372698