Oral microbiota as a biomarker for predicting the risk of malignancy in indeterminate pulmonary nodules: a prospective multicenter study

医学 生物标志物 唾液 恶性肿瘤 内科学 前瞻性队列研究 降钙素原 普雷沃菌属 癌症 胃肠病学 肿瘤科 病理 生物 败血症 细菌 生物化学 遗传学
作者
Qiong Ma,Chunxia Huang,Jiawei He,Xiao Zeng,Yingming Qu,Hongxia Xiang,Zhong Yang,Lei Mao,Ruyi Zheng,Junjie Xiao,Yuling Jiang,Shi-Yan Tan,Ping Xiao,Xiang Zhuang,Liting You,Xi Fu,Yifeng Ren,C. Zheng,Fengming You
出处
期刊:International Journal of Surgery [Elsevier]
被引量:5
标识
DOI:10.1097/js9.0000000000002152
摘要

Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN. Materials and Methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals. Following up, the IPNs were diagnosed as benign (BPN) or malignant pulmonary nodules (MPN). Through 16S rRNA sequencing, bioinformatics analysis, fluorescence in situ hybridization (FISH), and seven machine learning algorithms (support vector machine, logistic regression, naïve bayes, multi-layer perceptron, random forest, gradient-boosting decision tree, and LightGBM), we revealed the oral microbiota characteristics at different stages of HC-BPN-MPN, identified the sample types with the highest predictive potential, constructed and evaluated the optimal MPN prediction model for predictive efficacy, and determined microbial biomarkers. Additionally, based on the SHAP algorithm interpretation of the ML model’s output, we have developed a visualized IPN risk prediction system on the web. Results: Saliva, tongue coating, and throat swab microbiotas exhibit site-specific characteristics, with saliva microbiota being the optimal sample type for disease prediction. The saliva-LightGBM model demonstrated the best predictive performance (AUC = 0.887, 95%CI: 0.865-0.918), and identified Actinomyces, Rothia, Streptococcus, Prevotella, Porphyromonas , and Veillonella as biomarkers for predicting MPN. FISH was used to confirm the presence of a microbiota within tumors, and external data from a lung cancer cohort, along with three non-IPN disease cohorts, were employed to validate the specificity of the microbial biomarkers. Notably, coabundance analysis of the ecological network revealed that microbial biomarkers exhibit richer interspecies connections within the MPN, which may contribute to the pathogenesis of MPN. Conclusion: This study presents a new predictive strategy for the clinic to determine MPNs from BPNs, which aids in the surgical decision-making for IPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gao完成签到,获得积分10
2秒前
2秒前
gf完成签到 ,获得积分10
5秒前
YY发布了新的文献求助10
7秒前
tmobiusx完成签到,获得积分10
8秒前
那时花开应助科研通管家采纳,获得10
8秒前
那时花开应助科研通管家采纳,获得10
8秒前
10秒前
Roy完成签到,获得积分10
10秒前
文献求助完成签到,获得积分10
11秒前
似水流年完成签到 ,获得积分10
13秒前
binshier完成签到,获得积分10
19秒前
22秒前
Eclipse12138完成签到,获得积分10
23秒前
东山寺下学习的人完成签到,获得积分10
26秒前
lx关闭了lx文献求助
29秒前
LJX完成签到 ,获得积分10
33秒前
lx完成签到,获得积分20
35秒前
成就的书包完成签到,获得积分10
40秒前
lx发布了新的文献求助630
40秒前
Celeste应助爱听歌的含烟采纳,获得10
41秒前
系小小鱼啊完成签到 ,获得积分10
43秒前
43秒前
蘅皋发布了新的文献求助10
49秒前
彭洪凯完成签到,获得积分10
50秒前
51秒前
吹梦西洲完成签到,获得积分10
54秒前
Stuki完成签到,获得积分10
54秒前
是真的完成签到 ,获得积分10
56秒前
谨慎板栗发布了新的文献求助20
58秒前
ding应助蘅皋采纳,获得10
59秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
1分钟前
文献狗完成签到,获得积分10
1分钟前
1分钟前
养猪大户完成签到 ,获得积分10
1分钟前
呆小婷儿发布了新的文献求助10
1分钟前
1分钟前
1分钟前
federish完成签到 ,获得积分10
1分钟前
YIYI发布了新的文献求助10
1分钟前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378385
求助须知:如何正确求助?哪些是违规求助? 4502816
关于积分的说明 14014575
捐赠科研通 4411403
什么是DOI,文献DOI怎么找? 2423255
邀请新用户注册赠送积分活动 1416172
关于科研通互助平台的介绍 1393591