亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Oral microbiota as a biomarker for predicting the risk of malignancy in indeterminate pulmonary nodules: a prospective multicenter study

医学 生物标志物 唾液 恶性肿瘤 内科学 前瞻性队列研究 降钙素原 普雷沃菌属 癌症 胃肠病学 肿瘤科 病理 生物 败血症 生物化学 遗传学 细菌
作者
Qiong Ma,Chun-Xia Huang,Jiawei He,Xiao Zeng,Yingming Qu,Hongxia Xiang,Zhong Yang,Lei Mao,Ruyi Zheng,Junjie Xiao,Yuling Jiang,Shi-Yan Tan,Ping Xiao,Xiang Zhuang,Liting You,Xi Fu,Yifeng Ren,C. Zheng,Fengming You
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000002152
摘要

Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN. Materials and Methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals. Following up, the IPNs were diagnosed as benign (BPN) or malignant pulmonary nodules (MPN). Through 16S rRNA sequencing, bioinformatics analysis, fluorescence in situ hybridization (FISH), and seven machine learning algorithms (support vector machine, logistic regression, naïve bayes, multi-layer perceptron, random forest, gradient-boosting decision tree, and LightGBM), we revealed the oral microbiota characteristics at different stages of HC-BPN-MPN, identified the sample types with the highest predictive potential, constructed and evaluated the optimal MPN prediction model for predictive efficacy, and determined microbial biomarkers. Additionally, based on the SHAP algorithm interpretation of the ML model’s output, we have developed a visualized IPN risk prediction system on the web. Results: Saliva, tongue coating, and throat swab microbiotas exhibit site-specific characteristics, with saliva microbiota being the optimal sample type for disease prediction. The saliva-LightGBM model demonstrated the best predictive performance (AUC = 0.887, 95%CI: 0.865-0.918), and identified Actinomyces, Rothia, Streptococcus, Prevotella, Porphyromonas , and Veillonella as biomarkers for predicting MPN. FISH was used to confirm the presence of a microbiota within tumors, and external data from a lung cancer cohort, along with three non-IPN disease cohorts, were employed to validate the specificity of the microbial biomarkers. Notably, coabundance analysis of the ecological network revealed that microbial biomarkers exhibit richer interspecies connections within the MPN, which may contribute to the pathogenesis of MPN. Conclusion: This study presents a new predictive strategy for the clinic to determine MPNs from BPNs, which aids in the surgical decision-making for IPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助酷酷叫兽采纳,获得10
8秒前
小飞完成签到 ,获得积分10
17秒前
BJQ666发布了新的文献求助30
38秒前
爱听歌的紫菜完成签到 ,获得积分10
43秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
vanshaw完成签到,获得积分10
1分钟前
1分钟前
Wency发布了新的文献求助10
1分钟前
qqq完成签到,获得积分10
1分钟前
隐形曼青应助Wency采纳,获得30
1分钟前
xlxu发布了新的文献求助10
1分钟前
2分钟前
yangmo发布了新的文献求助10
2分钟前
2分钟前
酷酷叫兽发布了新的文献求助10
2分钟前
小马甲应助check003采纳,获得10
2分钟前
2分钟前
He发布了新的文献求助10
2分钟前
yangmo完成签到,获得积分10
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
木木发布了新的文献求助10
3分钟前
糊涂的青烟完成签到 ,获得积分10
3分钟前
ccc发布了新的文献求助20
3分钟前
赘婿应助ccc采纳,获得10
4分钟前
4分钟前
ccc发布了新的文献求助10
4分钟前
ccc完成签到,获得积分10
4分钟前
5分钟前
情怀应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
丘比特应助科研通管家采纳,获得10
5分钟前
hahahan完成签到 ,获得积分10
5分钟前
能干的语芙完成签到 ,获得积分10
5分钟前
哭泣的赛凤完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
check003发布了新的文献求助10
6分钟前
赘婿应助check003采纳,获得10
6分钟前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
The AASM International Classification of Sleep Disorders – Third Edition, Text Revision (ICSD-3-TR) 490
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3280374
求助须知:如何正确求助?哪些是违规求助? 2918494
关于积分的说明 8390335
捐赠科研通 2589587
什么是DOI,文献DOI怎么找? 1410948
科研通“疑难数据库(出版商)”最低求助积分说明 657857
邀请新用户注册赠送积分活动 639110