已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Oral microbiota as a biomarker for predicting the risk of malignancy in indeterminate pulmonary nodules: a prospective multicenter study

医学 生物标志物 唾液 恶性肿瘤 内科学 前瞻性队列研究 降钙素原 普雷沃菌属 癌症 胃肠病学 肿瘤科 病理 生物 败血症 细菌 生物化学 遗传学
作者
Qiong Ma,Chunxia Huang,Jiawei He,Xiao Zeng,Yingming Qu,Hongxia Xiang,Zhong Yang,Lei Mao,Ruyi Zheng,Junjie Xiao,Yuling Jiang,Shi-Yan Tan,Ping Xiao,Xiang Zhuang,Liting You,Xi Fu,Yifeng Ren,C. Zheng,Fengming You
出处
期刊:International Journal of Surgery [Elsevier]
被引量:5
标识
DOI:10.1097/js9.0000000000002152
摘要

Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN. Materials and Methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals. Following up, the IPNs were diagnosed as benign (BPN) or malignant pulmonary nodules (MPN). Through 16S rRNA sequencing, bioinformatics analysis, fluorescence in situ hybridization (FISH), and seven machine learning algorithms (support vector machine, logistic regression, naïve bayes, multi-layer perceptron, random forest, gradient-boosting decision tree, and LightGBM), we revealed the oral microbiota characteristics at different stages of HC-BPN-MPN, identified the sample types with the highest predictive potential, constructed and evaluated the optimal MPN prediction model for predictive efficacy, and determined microbial biomarkers. Additionally, based on the SHAP algorithm interpretation of the ML model’s output, we have developed a visualized IPN risk prediction system on the web. Results: Saliva, tongue coating, and throat swab microbiotas exhibit site-specific characteristics, with saliva microbiota being the optimal sample type for disease prediction. The saliva-LightGBM model demonstrated the best predictive performance (AUC = 0.887, 95%CI: 0.865-0.918), and identified Actinomyces, Rothia, Streptococcus, Prevotella, Porphyromonas , and Veillonella as biomarkers for predicting MPN. FISH was used to confirm the presence of a microbiota within tumors, and external data from a lung cancer cohort, along with three non-IPN disease cohorts, were employed to validate the specificity of the microbial biomarkers. Notably, coabundance analysis of the ecological network revealed that microbial biomarkers exhibit richer interspecies connections within the MPN, which may contribute to the pathogenesis of MPN. Conclusion: This study presents a new predictive strategy for the clinic to determine MPNs from BPNs, which aids in the surgical decision-making for IPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
1秒前
超级的画笔完成签到,获得积分10
1秒前
BALB/c饲养员完成签到,获得积分10
2秒前
wanci应助ycw7777采纳,获得10
3秒前
可爱从霜发布了新的文献求助10
4秒前
liuting发布了新的文献求助10
4秒前
Jemezs完成签到,获得积分10
5秒前
6秒前
want驳回了xxfsx应助
6秒前
Lucas应助冒险寻羊采纳,获得10
7秒前
7秒前
语嘘嘘发布了新的文献求助30
8秒前
electricelectric应助harry采纳,获得30
9秒前
9秒前
10秒前
GPTea应助姜宇航采纳,获得20
12秒前
Jemezs发布了新的文献求助10
13秒前
15秒前
杀鸡发布了新的文献求助10
15秒前
15秒前
123完成签到,获得积分10
17秒前
华桦子完成签到 ,获得积分10
17秒前
17秒前
科研通AI6应助杭谷波采纳,获得10
18秒前
上上签发布了新的文献求助10
19秒前
yyyyy完成签到,获得积分10
21秒前
科研通AI6应助可爱从霜采纳,获得10
22秒前
23秒前
小小发布了新的文献求助10
23秒前
隐形曼青应助盖盖盖浇饭采纳,获得10
24秒前
Lin发布了新的文献求助10
26秒前
传奇3应助秋月明采纳,获得10
26秒前
moyu123发布了新的文献求助10
26秒前
Lucas应助曾培采纳,获得10
26秒前
bioglia完成签到,获得积分10
29秒前
小二完成签到 ,获得积分10
30秒前
希望天下0贩的0应助杀鸡采纳,获得10
30秒前
香蕉觅云应助合适尔蝶采纳,获得10
30秒前
31秒前
乐生完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355874
求助须知:如何正确求助?哪些是违规求助? 4487717
关于积分的说明 13970886
捐赠科研通 4388491
什么是DOI,文献DOI怎么找? 2411104
邀请新用户注册赠送积分活动 1403650
关于科研通互助平台的介绍 1377279