Oral microbiota as a biomarker for predicting the risk of malignancy in indeterminate pulmonary nodules: a prospective multicenter study

医学 生物标志物 唾液 恶性肿瘤 内科学 前瞻性队列研究 降钙素原 普雷沃菌属 癌症 胃肠病学 肿瘤科 病理 生物 败血症 细菌 生物化学 遗传学
作者
Qiong Ma,Chunxia Huang,Jiawei He,Xiao Zeng,Yingming Qu,Hongxia Xiang,Zhong Yang,Lei Mao,Ruyi Zheng,Junjie Xiao,Yuling Jiang,Shi-Yan Tan,Ping Xiao,Xiang Zhuang,Liting You,Xi Fu,Yifeng Ren,C. Zheng,Fengming You
出处
期刊:International Journal of Surgery [Elsevier]
被引量:5
标识
DOI:10.1097/js9.0000000000002152
摘要

Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN. Materials and Methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals. Following up, the IPNs were diagnosed as benign (BPN) or malignant pulmonary nodules (MPN). Through 16S rRNA sequencing, bioinformatics analysis, fluorescence in situ hybridization (FISH), and seven machine learning algorithms (support vector machine, logistic regression, naïve bayes, multi-layer perceptron, random forest, gradient-boosting decision tree, and LightGBM), we revealed the oral microbiota characteristics at different stages of HC-BPN-MPN, identified the sample types with the highest predictive potential, constructed and evaluated the optimal MPN prediction model for predictive efficacy, and determined microbial biomarkers. Additionally, based on the SHAP algorithm interpretation of the ML model’s output, we have developed a visualized IPN risk prediction system on the web. Results: Saliva, tongue coating, and throat swab microbiotas exhibit site-specific characteristics, with saliva microbiota being the optimal sample type for disease prediction. The saliva-LightGBM model demonstrated the best predictive performance (AUC = 0.887, 95%CI: 0.865-0.918), and identified Actinomyces, Rothia, Streptococcus, Prevotella, Porphyromonas , and Veillonella as biomarkers for predicting MPN. FISH was used to confirm the presence of a microbiota within tumors, and external data from a lung cancer cohort, along with three non-IPN disease cohorts, were employed to validate the specificity of the microbial biomarkers. Notably, coabundance analysis of the ecological network revealed that microbial biomarkers exhibit richer interspecies connections within the MPN, which may contribute to the pathogenesis of MPN. Conclusion: This study presents a new predictive strategy for the clinic to determine MPNs from BPNs, which aids in the surgical decision-making for IPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
就吧发布了新的文献求助10
1秒前
lyz发布了新的文献求助10
6秒前
zlw121完成签到 ,获得积分10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
xzy998应助努力采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
Tourist应助科研通管家采纳,获得10
7秒前
changping应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
8秒前
Tourist应助科研通管家采纳,获得30
8秒前
大个应助科研通管家采纳,获得10
8秒前
8秒前
TAT完成签到 ,获得积分10
8秒前
wwz应助科研通管家采纳,获得10
8秒前
火星上惜天完成签到 ,获得积分10
9秒前
9秒前
yekindar完成签到,获得积分10
13秒前
Aurora完成签到 ,获得积分10
14秒前
丘比特应助风中诗蕊采纳,获得10
14秒前
15秒前
15秒前
小曹完成签到,获得积分10
15秒前
orixero应助秋子david采纳,获得10
18秒前
ly关注了科研通微信公众号
18秒前
19秒前
小杭76应助能干靖儿采纳,获得10
19秒前
ChenWen完成签到,获得积分10
19秒前
guaishou完成签到,获得积分10
20秒前
ren完成签到,获得积分20
21秒前
哈哈给哈关注了科研通微信公众号
21秒前
单薄的夜南应助陈麦子采纳,获得10
22秒前
清漪发布了新的文献求助10
22秒前
大力半鬼完成签到,获得积分10
27秒前
夕夜发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298580
求助须知:如何正确求助?哪些是违规求助? 4447072
关于积分的说明 13841540
捐赠科研通 4332544
什么是DOI,文献DOI怎么找? 2378222
邀请新用户注册赠送积分活动 1373488
关于科研通互助平台的介绍 1339077