An Improved Dung Beetle Optimizer for the Twin Stacker Cranes’ Scheduling Problem

粪甲虫 堆垛机 调度(生产过程) 计算机科学 数学优化 生物 数学 工程类 植物 金龟子科 电气工程
作者
Yidong Chen,Jinghua Li,Lei Zhou,De-Ning Song,Boxin Yang
出处
期刊:Biomimetics [MDPI AG]
卷期号:9 (11): 683-683
标识
DOI:10.3390/biomimetics9110683
摘要

In recent years, twin stacker crane units have been increasingly integrated into large automated storage and retrieval systems (AS/RSs) in shipyards to enhance operational efficiency. These common rail units often encounter conflicts, and the additional time costs incurred during collision avoidance significantly diminish AS/RS efficiency. Therefore, addressing the twin stacker cranes' scheduling problem (TSSP) with a collision-free constraint is essential. This paper presents a novel approach to identifying and avoiding collisions by approximating the stacker crane's trip trajectory as a triangular envelope. Utilizing the collision identification equation derived from this method, we express the collision-free constraint within the TSSP and formulate a mixed-integer programming model. Recognizing the multimodal characteristics of the TSSP objective function, we introduce the dung beetle optimizer (DBO), which excels in multimodal test functions, as the foundational framework for a heuristic optimizer aimed at large-scale TSSPs that are challenging for exact algorithms. To adapt the optimizer for bi-level programming problems like TSSPs, we propose a double-layer code mechanism and innovatively design a binary DBO for the binary layer. Additionally, we incorporate several components, including a hybrid initialization strategy, a Cauchy-Gaussian mixture distribution neighborhood search strategy, and a velocity revision strategy based on continuous space discretization, into the improved dung beetle optimizer (IDBO) to further enhance its performance. To validate the efficacy of the IDBO, we established a numerical experimental environment and generated a series of instances based on actual environmental parameters and operational conditions from an advanced AS/RS in southeastern China. Extensive comparative experiments on various scales and distributions demonstrate that the components of the IDBO significantly improve algorithm performance, yielding stable advantages over classical algorithms in solving TSSPs, with improvements exceeding 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
书记发布了新的文献求助10
刚刚
1秒前
sally发布了新的文献求助10
1秒前
zmnzmnzmn发布了新的文献求助10
1秒前
2秒前
绿大暗发布了新的文献求助30
2秒前
彩色芝麻完成签到,获得积分10
3秒前
小二郎应助Jello采纳,获得10
3秒前
冰镇可乐完成签到,获得积分20
5秒前
深情安青应助kkk采纳,获得10
5秒前
6秒前
傲娇的觅翠完成签到,获得积分10
6秒前
深情安青应助hsn采纳,获得10
6秒前
CodeCraft应助Hawnyoung采纳,获得10
7秒前
佳无夜完成签到,获得积分10
7秒前
7秒前
书记发布了新的文献求助10
8秒前
sheep完成签到,获得积分10
9秒前
10秒前
李煜琛完成签到 ,获得积分10
10秒前
zh发布了新的文献求助10
11秒前
Sunny完成签到 ,获得积分10
12秒前
12秒前
赶路人完成签到,获得积分10
13秒前
13秒前
kunkun完成签到,获得积分10
14秒前
15秒前
16秒前
书记发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
breeze发布了新的文献求助20
18秒前
缘来如风完成签到,获得积分10
18秒前
李沐唅发布了新的文献求助10
19秒前
19秒前
kiki发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421238
求助须知:如何正确求助?哪些是违规求助? 4536244
关于积分的说明 14152878
捐赠科研通 4452873
什么是DOI,文献DOI怎么找? 2442612
邀请新用户注册赠送积分活动 1433990
关于科研通互助平台的介绍 1411176