An Improved Dung Beetle Optimizer for the Twin Stacker Cranes’ Scheduling Problem

粪甲虫 堆垛机 调度(生产过程) 计算机科学 数学优化 生物 数学 工程类 植物 金龟子科 电气工程
作者
Yidong Chen,Jinghua Li,Lei Zhou,De-Ning Song,Boxin Yang
出处
期刊:Biomimetics [MDPI AG]
卷期号:9 (11): 683-683
标识
DOI:10.3390/biomimetics9110683
摘要

In recent years, twin stacker crane units have been increasingly integrated into large automated storage and retrieval systems (AS/RSs) in shipyards to enhance operational efficiency. These common rail units often encounter conflicts, and the additional time costs incurred during collision avoidance significantly diminish AS/RS efficiency. Therefore, addressing the twin stacker cranes' scheduling problem (TSSP) with a collision-free constraint is essential. This paper presents a novel approach to identifying and avoiding collisions by approximating the stacker crane's trip trajectory as a triangular envelope. Utilizing the collision identification equation derived from this method, we express the collision-free constraint within the TSSP and formulate a mixed-integer programming model. Recognizing the multimodal characteristics of the TSSP objective function, we introduce the dung beetle optimizer (DBO), which excels in multimodal test functions, as the foundational framework for a heuristic optimizer aimed at large-scale TSSPs that are challenging for exact algorithms. To adapt the optimizer for bi-level programming problems like TSSPs, we propose a double-layer code mechanism and innovatively design a binary DBO for the binary layer. Additionally, we incorporate several components, including a hybrid initialization strategy, a Cauchy-Gaussian mixture distribution neighborhood search strategy, and a velocity revision strategy based on continuous space discretization, into the improved dung beetle optimizer (IDBO) to further enhance its performance. To validate the efficacy of the IDBO, we established a numerical experimental environment and generated a series of instances based on actual environmental parameters and operational conditions from an advanced AS/RS in southeastern China. Extensive comparative experiments on various scales and distributions demonstrate that the components of the IDBO significantly improve algorithm performance, yielding stable advantages over classical algorithms in solving TSSPs, with improvements exceeding 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助马静雨采纳,获得10
1秒前
1秒前
吴岳发布了新的文献求助10
2秒前
XHT完成签到,获得积分10
2秒前
Martin完成签到 ,获得积分10
3秒前
花花完成签到,获得积分10
3秒前
3秒前
Khr1stINK发布了新的文献求助10
4秒前
李繁蕊发布了新的文献求助10
4秒前
科研通AI2S应助灵巧荆采纳,获得10
6秒前
尼古拉斯二狗蛋完成签到,获得积分10
6秒前
SCI发布了新的文献求助10
6秒前
6秒前
6秒前
畅快的谷梦完成签到,获得积分10
6秒前
6秒前
猪猪hero发布了新的文献求助10
7秒前
...完成签到,获得积分10
7秒前
7秒前
pluto应助Frank采纳,获得10
8秒前
三磷酸腺苷完成签到 ,获得积分10
8秒前
8秒前
请叫我风吹麦浪应助jbhb采纳,获得10
8秒前
8秒前
小李叭叭完成签到,获得积分10
9秒前
打打应助LiShin采纳,获得10
10秒前
10秒前
Orange应助luuuuuu采纳,获得10
11秒前
11秒前
个性的大地完成签到,获得积分10
12秒前
kawayifenm完成签到,获得积分10
12秒前
lxh2424发布了新的文献求助30
12秒前
Rezeal完成签到 ,获得积分10
12秒前
w.h发布了新的文献求助10
12秒前
星星发布了新的文献求助10
12秒前
可爱的函函应助jy采纳,获得10
13秒前
seal完成签到,获得积分10
13秒前
你hao发布了新的文献求助10
13秒前
13秒前
yml完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794