An Improved Dung Beetle Optimizer for the Twin Stacker Cranes’ Scheduling Problem

粪甲虫 堆垛机 调度(生产过程) 计算机科学 数学优化 生物 数学 工程类 植物 金龟子科 电气工程
作者
Yidong Chen,Jinghua Li,Lei Zhou,De-Ning Song,Boxin Yang
出处
期刊:Biomimetics [MDPI AG]
卷期号:9 (11): 683-683
标识
DOI:10.3390/biomimetics9110683
摘要

In recent years, twin stacker crane units have been increasingly integrated into large automated storage and retrieval systems (AS/RSs) in shipyards to enhance operational efficiency. These common rail units often encounter conflicts, and the additional time costs incurred during collision avoidance significantly diminish AS/RS efficiency. Therefore, addressing the twin stacker cranes' scheduling problem (TSSP) with a collision-free constraint is essential. This paper presents a novel approach to identifying and avoiding collisions by approximating the stacker crane's trip trajectory as a triangular envelope. Utilizing the collision identification equation derived from this method, we express the collision-free constraint within the TSSP and formulate a mixed-integer programming model. Recognizing the multimodal characteristics of the TSSP objective function, we introduce the dung beetle optimizer (DBO), which excels in multimodal test functions, as the foundational framework for a heuristic optimizer aimed at large-scale TSSPs that are challenging for exact algorithms. To adapt the optimizer for bi-level programming problems like TSSPs, we propose a double-layer code mechanism and innovatively design a binary DBO for the binary layer. Additionally, we incorporate several components, including a hybrid initialization strategy, a Cauchy-Gaussian mixture distribution neighborhood search strategy, and a velocity revision strategy based on continuous space discretization, into the improved dung beetle optimizer (IDBO) to further enhance its performance. To validate the efficacy of the IDBO, we established a numerical experimental environment and generated a series of instances based on actual environmental parameters and operational conditions from an advanced AS/RS in southeastern China. Extensive comparative experiments on various scales and distributions demonstrate that the components of the IDBO significantly improve algorithm performance, yielding stable advantages over classical algorithms in solving TSSPs, with improvements exceeding 10%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
nichts完成签到 ,获得积分10
1秒前
vapour应助开放穆采纳,获得10
2秒前
3秒前
华123完成签到,获得积分10
3秒前
李海翔完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
spark完成签到,获得积分20
4秒前
yizhiGao完成签到,获得积分10
4秒前
Yatagarasu完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
奋斗朋友完成签到 ,获得积分10
5秒前
需要论文完成签到,获得积分10
6秒前
6秒前
轻松的水之完成签到,获得积分20
6秒前
mila完成签到,获得积分10
6秒前
wail完成签到,获得积分20
7秒前
7秒前
8秒前
8秒前
阿雷发布了新的文献求助10
9秒前
9秒前
9秒前
大气丹萱完成签到 ,获得积分10
10秒前
知性的刺猬完成签到,获得积分10
10秒前
wangfang0228完成签到 ,获得积分10
10秒前
10秒前
10秒前
清爽朋友发布了新的文献求助10
10秒前
英吉利25发布了新的文献求助10
10秒前
西洲完成签到,获得积分10
10秒前
11秒前
11秒前
wzppp完成签到,获得积分10
11秒前
山西球迷发布了新的文献求助10
11秒前
小马甲应助lee采纳,获得10
12秒前
12秒前
小C完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503