An Improved Dung Beetle Optimizer for the Twin Stacker Cranes’ Scheduling Problem

粪甲虫 堆垛机 调度(生产过程) 计算机科学 数学优化 生物 数学 工程类 植物 金龟子科 电气工程
作者
Yidong Chen,Jinghua Li,Lei Zhou,De-Ning Song,Boxin Yang
出处
期刊:Biomimetics [MDPI AG]
卷期号:9 (11): 683-683
标识
DOI:10.3390/biomimetics9110683
摘要

In recent years, twin stacker crane units have been increasingly integrated into large automated storage and retrieval systems (AS/RSs) in shipyards to enhance operational efficiency. These common rail units often encounter conflicts, and the additional time costs incurred during collision avoidance significantly diminish AS/RS efficiency. Therefore, addressing the twin stacker cranes' scheduling problem (TSSP) with a collision-free constraint is essential. This paper presents a novel approach to identifying and avoiding collisions by approximating the stacker crane's trip trajectory as a triangular envelope. Utilizing the collision identification equation derived from this method, we express the collision-free constraint within the TSSP and formulate a mixed-integer programming model. Recognizing the multimodal characteristics of the TSSP objective function, we introduce the dung beetle optimizer (DBO), which excels in multimodal test functions, as the foundational framework for a heuristic optimizer aimed at large-scale TSSPs that are challenging for exact algorithms. To adapt the optimizer for bi-level programming problems like TSSPs, we propose a double-layer code mechanism and innovatively design a binary DBO for the binary layer. Additionally, we incorporate several components, including a hybrid initialization strategy, a Cauchy-Gaussian mixture distribution neighborhood search strategy, and a velocity revision strategy based on continuous space discretization, into the improved dung beetle optimizer (IDBO) to further enhance its performance. To validate the efficacy of the IDBO, we established a numerical experimental environment and generated a series of instances based on actual environmental parameters and operational conditions from an advanced AS/RS in southeastern China. Extensive comparative experiments on various scales and distributions demonstrate that the components of the IDBO significantly improve algorithm performance, yielding stable advantages over classical algorithms in solving TSSPs, with improvements exceeding 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鲤鱼之槐发布了新的文献求助10
1秒前
AoZhang发布了新的文献求助10
2秒前
5秒前
tt完成签到 ,获得积分10
6秒前
平淡的凡桃完成签到,获得积分10
6秒前
haha发布了新的文献求助10
7秒前
10秒前
Logkit完成签到 ,获得积分10
11秒前
结实的丹雪完成签到,获得积分10
12秒前
如意白昼发布了新的文献求助10
13秒前
14秒前
小包子发布了新的文献求助10
15秒前
Pinkney发布了新的文献求助10
18秒前
斯文败类应助haha采纳,获得10
20秒前
21秒前
扶溪筠完成签到 ,获得积分10
22秒前
芳hanbing20129_完成签到,获得积分10
22秒前
狮子座发布了新的文献求助10
29秒前
儒雅的小虾米完成签到,获得积分20
31秒前
lovelife完成签到,获得积分10
32秒前
AoZhang完成签到,获得积分20
32秒前
个性的都让人完成签到,获得积分10
32秒前
34秒前
35秒前
JoeJ应助激昂的大船采纳,获得10
37秒前
怕黑念薇发布了新的文献求助10
38秒前
躺不平的洋仔完成签到,获得积分10
38秒前
悦耳溪流完成签到,获得积分10
39秒前
39秒前
40秒前
科目三应助青鸟飞鱼采纳,获得10
42秒前
42秒前
43秒前
43秒前
44秒前
dops发布了新的文献求助10
48秒前
阳佟天川完成签到,获得积分10
48秒前
49秒前
筑梦发布了新的文献求助10
50秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3318402
求助须知:如何正确求助?哪些是违规求助? 2949819
关于积分的说明 8548151
捐赠科研通 2626513
什么是DOI,文献DOI怎么找? 1437229
科研通“疑难数据库(出版商)”最低求助积分说明 666193
邀请新用户注册赠送积分活动 652133