已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Extracting Fruit Disease Knowledge from Research Papers Based on Large Language Models and Prompt Engineering

计算机科学 自然语言处理
作者
Yunqiao Fei,Jingchao Fan,Guomin Zhou
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:15 (2): 628-628
标识
DOI:10.3390/app15020628
摘要

In China, fruit tree diseases are a significant threat to the development of the fruit tree industry, and knowledge about fruit tree diseases is the most needed professional knowledge for fruit farmers and other practitioners in the fruit tree industry. Research papers are the primary sources of professional knowledge that represent the cutting-edge progress in fruit disease research. Traditional knowledge engineering methods for knowledge acquisition require extensive and cumbersome preparatory work, and they demand a high level of professional background and information technology skills from the handlers. This paper, from the perspective of fruit tree industry knowledge dissemination, aims at users such as fruit farmers, fruit tree experts, fruit tree knowledge communicators, and information gatherers. It proposes a fast, cost-effective, and low-technical-barrier method for extracting fruit tree disease knowledge from research paper abstracts—K-Extract, based on large language models (LLMs) and prompt engineering. Under zero-shot conditions, K-Extract utilizes conversational LLMs to automate the extraction of fruit tree disease knowledge. The K-Extract method has constructed a comprehensive classification system for fruit tree diseases and, through a series of optimized prompt questions, effectively overcomes the deficiencies of LLM models in providing factual accuracy. This paper tests multiple LLM models available in the Chinese market, and the results show that K-Extract can seamlessly integrate with any conversational LLM model, with the DeepSeek model and the Kimi model performing particularly well. The experimental results indicate that LLM models have a high accuracy rate in handling judgment tasks and simple knowledge Q&A tasks. The K-Extract method is simple, efficient, and accurate, and can serve as a convenient tool for knowledge extraction in the agricultural field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨中漫步完成签到,获得积分10
7秒前
孤独的帅着完成签到,获得积分10
7秒前
姜淮完成签到 ,获得积分10
13秒前
mwj完成签到,获得积分10
14秒前
自由念露完成签到 ,获得积分10
18秒前
伶俐绿海完成签到 ,获得积分10
19秒前
赘婿应助hh采纳,获得10
19秒前
23秒前
24秒前
hh完成签到,获得积分10
25秒前
25秒前
机灵的苑睐完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
月亮在o完成签到 ,获得积分10
28秒前
Yuu发布了新的文献求助10
30秒前
清逸完成签到 ,获得积分10
30秒前
Shengee发布了新的文献求助10
30秒前
余凉完成签到,获得积分10
31秒前
研友_VZG7GZ应助山猫大王采纳,获得10
34秒前
HughWang完成签到,获得积分10
35秒前
NagatoYuki完成签到,获得积分10
43秒前
一夜暴富完成签到 ,获得积分10
43秒前
小胡不吃草莓完成签到 ,获得积分10
47秒前
52秒前
52秒前
儒雅涵易完成签到 ,获得积分10
55秒前
天道酬勤发布了新的文献求助10
57秒前
xmqaq发布了新的文献求助10
57秒前
铃兰完成签到 ,获得积分10
58秒前
英姑应助Shengee采纳,获得10
59秒前
1699Z完成签到 ,获得积分10
59秒前
1分钟前
归尘发布了新的文献求助10
1分钟前
笨笨娇完成签到 ,获得积分10
1分钟前
初雪完成签到,获得积分10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
YSM应助科研通管家采纳,获得60
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671119
求助须知:如何正确求助?哪些是违规求助? 3228049
关于积分的说明 9778081
捐赠科研通 2938277
什么是DOI,文献DOI怎么找? 1609808
邀请新用户注册赠送积分活动 760461
科研通“疑难数据库(出版商)”最低求助积分说明 735962