Fuzzy-Based Identification of Transition Cells to Infer Cell Trajectory for Single-Cell Transcriptomics

鉴定(生物学) 弹道 模糊逻辑 转录组 计算机科学 细胞 过渡(遗传学) 计算生物学 生物 人工智能 遗传学 物理 基因 生态学 基因表达 天文
作者
Xiang Chen,Yibing Ma,Yongle Shi,Bai Zhang,Wu HanWen,Jie Gao
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
被引量:1
标识
DOI:10.1089/cmb.2023.0432
摘要

With the continuous evolution of single-cell RNA sequencing technology, it has become feasible to reconstruct cell development processes using computational methods. Trajectory inference is a crucial downstream analytical task that provides valuable insights into understanding cell cycle and differentiation. During cell development, cells exhibit both stable and transition states, which makes it challenging to accurately identify these cells. To address this challenge, we propose a novel single-cell trajectory inference method using fuzzy clustering, named scFCTI. By introducing fuzzy clustering and quantifying cell uncertainty, scFCTI can identify transition cells within unstable cell states. Moreover, scFCTI can obtain refined cell classification by characterizing different cell stages, which gain more accurate single-cell trajectory reconstruction containing transition paths. To validate the effectiveness of scFCTI, we conduct experiments on five real datasets and four different structure simulation datasets, comparing them with several state-of-the-art trajectory inference methods. The results demonstrate that scFCTI outperforms these methods by successfully identifying unstable cell clusters and obtaining more accurate cell paths with transition states. Especially the experimental results demonstrate that scFCTI can reconstruct the cell trajectory more precisely.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
布丁圆团完成签到,获得积分10
1秒前
小狗蹦完成签到,获得积分10
1秒前
meng完成签到,获得积分10
1秒前
hanny发布了新的文献求助10
1秒前
2秒前
老福贵儿应助FJLSDNMV采纳,获得10
2秒前
2秒前
陈世林完成签到,获得积分10
3秒前
3秒前
3秒前
i3utter完成签到,获得积分10
4秒前
SUNXI完成签到,获得积分10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
六六六应助科研通管家采纳,获得10
4秒前
桐桐应助心灵美剑封采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
Jared应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
公龟应助科研通管家采纳,获得10
5秒前
Akim应助潇洒的h采纳,获得10
5秒前
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
科研通AI6应助周非王采纳,获得30
5秒前
treetree的应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
仁爱忆曼完成签到,获得积分10
5秒前
5秒前
5秒前
xwhite完成签到,获得积分10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
Jared应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665717
求助须知:如何正确求助?哪些是违规求助? 4877979
关于积分的说明 15115220
捐赠科研通 4824955
什么是DOI,文献DOI怎么找? 2582994
邀请新用户注册赠送积分活动 1537014
关于科研通互助平台的介绍 1495441