A Wavelet Decomposition Method for Estimating Soybean Seed Composition with Hyperspectral Data

光谱辐射计 高光谱成像 偏最小二乘回归 小波 天蓬 转化(遗传学) 多光谱图像 精准农业 计算机科学 环境科学 遥感 数学 人工智能 农业 统计 反射率 地理 生物化学 物理 化学 考古 光学 基因
作者
Aviskar Giri,Vasit Sagan,Haireti Alifu,Abuduwanli Maiwulanjiang,Supria Sarkar,Bishal Roy,Felix Fritschi
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (23): 4594-4594 被引量:1
标识
DOI:10.3390/rs16234594
摘要

Soybean seed composition, particularly protein and oil content, plays a critical role in agricultural practices, influencing crop value, nutritional quality, and marketability. Accurate and efficient methods for predicting seed composition are essential for optimizing crop management and breeding strategies. This study assesses the effectiveness of combining handheld spectroradiometers with the Mexican Hat wavelet transformation to predict soybean seed composition at both seed and canopy levels. Initial analyses using raw spectral data from these devices showed limited predictive accuracy. However, by using the Mexican Hat wavelet transformation, meaningful features were extracted from the spectral data, significantly enhancing prediction performance. Results showed improvements: for seed-level data, Partial Least Squares Regression (PLSR), a method used to reduce spectral data complexity while retaining critical information, showed R2 values increasing from 0.57 to 0.61 for protein content and from 0.58 to 0.74 for oil content post-transformation. Canopy-level data analyzed with Random Forest Regression (RFR), an ensemble method designed to capture non-linear relationships, also demonstrated substantial improvements, with R2 increasing from 0.07 to 0.44 for protein and from 0.02 to 0.39 for oil content post-transformation. These findings demonstrate that integrating handheld spectroradiometer data with wavelet transformation bridges the gap between high-end spectral imaging and practical, accessible solutions for field applications. This approach not only improves the accuracy of seed composition prediction at both seed and canopy levels but also supports more informed decision-making in crop management. This work represents a significant step towards making advanced crop assessment tools more accessible, potentially improving crop management strategies and yield optimization across various farming scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
myt22发布了新的文献求助10
刚刚
Akim应助yyy采纳,获得10
1秒前
温水云发布了新的文献求助10
3秒前
科研通AI2S应助谷谷采纳,获得10
3秒前
5秒前
5秒前
所所应助hsvxvk采纳,获得10
7秒前
8秒前
8秒前
9秒前
温水云完成签到,获得积分10
10秒前
10秒前
雁丘发布了新的文献求助10
10秒前
大个应助朵朵采纳,获得10
11秒前
阿桂完成签到,获得积分10
11秒前
11秒前
12秒前
yyy发布了新的文献求助10
13秒前
周凡淇发布了新的文献求助10
14秒前
15秒前
15秒前
aganer发布了新的文献求助10
15秒前
李爱国应助沉静翠丝采纳,获得10
16秒前
家湘发布了新的文献求助10
16秒前
18秒前
18秒前
靓丽访枫发布了新的文献求助10
19秒前
EW完成签到,获得积分10
19秒前
19秒前
好大一只小坏蛋完成签到,获得积分20
20秒前
Orange应助刘莱莱采纳,获得10
22秒前
Orange应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
ZeKaWa应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得30
22秒前
JuinZhu应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526155
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280871
捐赠科研通 2804159
什么是DOI,文献DOI怎么找? 1539302
邀请新用户注册赠送积分活动 716522
科研通“疑难数据库(出版商)”最低求助积分说明 709495