Abstract Uncontrolled haemorrhage is a leading cause of trauma-related fatalities, highlighting the critical need for rapid and effective haemostasis. Current haemostatic materials encounter limitations such as slow clotting and weak mechanical strength, while most of bioadhesives compromise their adhesion performance to wet tissues for biocompatibility and degradability. In this study, a molecular self-assembly strategy is proposed, developing a biocompatible and biodegradable protein-based patch with excellent adhesion performance. This strategy utilizes fibrinogen modified with hydrophobic groups to induce self-assembly into a hydrogel, which is converted into a dry patch. The protein patch enhances adhesion performance on the wet tissue through a dry cross-linking method and robust intra/inter-molecular interactions. This patch demonstrates excellent haemostatic efficacy in both porcine oozing wound and porcine severe acute haemorrhage. It maintains biological functionality, and ensures sustained wound sealing while gradually degrading in vivo, making it a promising candidate for clinical tissue sealing applications.