Classification and fault diagnosis of power transformers with dissolved gas analysis using improved clustering methods

溶解气体分析 聚类分析 支持向量机 变压器 工程类 可靠性工程 数据挖掘 计算机科学 变压器油 人工智能 电压 电气工程
作者
Nasser Kianimehr,Hamed Zeinoddini‐Meymand,Farhad Shahnia
出处
期刊:Compel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering [Emerald (MCB UP)]
标识
DOI:10.1108/compel-06-2024-0250
摘要

Purpose Power transformers are vital components of an electrical network. A defective transformer can cause instability and blackouts in parts of the network. An accurate classification of different transformer faults results in a relatively accurate fault diagnosis and timely corrective actions. It is possible to increase productivity and reduce costs by using fault detection of power transformers through the analysis of gases dissolved in oil. The proposed technique is a suitable tool to help the utilities and engineers in charge of preventive maintenance by reducing the costs of different fault diagnosis tests for power transformers. Design/methodology/approach In this paper, the IEC 60599 standard along with clustering and classification methods are used to classify power transformer’s fault types. K-means and Fuzzy C-means clustering methods are used for clustering, and the support vector machine (SVM) method is used for classification of different types of faults in ‎power ‎transformers. The performance of K-means and SVM methods is improved by using the Grasshopper Optimization Algorithm (GOA). The efficiency of the proposed methods is evaluated using real field data of power transformers. The purpose of this study is to propose hybrid methods including K-means-GOA clustering and SVM-GOA classification for accurate fault diagnosis. These methods have been used for the first time in fault diagnosis determination of power transformers through gas analysis. The Silhouette criteria is used in this paper to compare the efficiency of different clustering methods. Findings Simulation results of the paper are based on the gas chromatography data related to 266 different real power transformers. They show the high accuracy and high-performance speed of intelligent clustering and classification methods compared to conventional ones. This analysis would be helpful in performing the required maintenance check and plan for repairs. Originality/value The applicability and efficiency of the proposed hybrid K-means-GOA and SVM-GOA models are verified for transformer fault detection using the experimental diverse data set including 266 set of real field test parameters of power transformers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Toby发布了新的文献求助10
刚刚
深情安青应助英俊的晓槐采纳,获得10
1秒前
scq完成签到,获得积分10
3秒前
3秒前
4秒前
huang96完成签到,获得积分10
4秒前
1中蓝发布了新的文献求助10
5秒前
布丁果冻完成签到,获得积分20
6秒前
8秒前
buno应助nnnn采纳,获得10
9秒前
万能图书馆应助nnnn采纳,获得10
9秒前
赎罪完成签到 ,获得积分10
9秒前
kk发布了新的文献求助30
9秒前
11秒前
1中蓝完成签到,获得积分20
12秒前
饱满板栗完成签到,获得积分10
13秒前
13秒前
14秒前
研友_俞鸿煊完成签到,获得积分10
14秒前
LLL完成签到,获得积分10
16秒前
17秒前
华仔应助玩命的紫南采纳,获得10
18秒前
逢春发布了新的文献求助10
19秒前
21秒前
围着那只小兔转完成签到 ,获得积分10
22秒前
胡萝卜R应助ff采纳,获得20
23秒前
pojian完成签到,获得积分10
23秒前
xuxu完成签到,获得积分10
24秒前
26秒前
26秒前
寄云间发布了新的文献求助10
26秒前
26秒前
想看不眠日记完成签到,获得积分10
27秒前
沅芷完成签到,获得积分10
28秒前
顺心香露发布了新的文献求助10
29秒前
29秒前
ZL05发布了新的文献求助10
30秒前
四叶草发布了新的文献求助10
30秒前
努力搞科研完成签到,获得积分10
31秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The Politics of Electricity Regulation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339865
求助须知:如何正确求助?哪些是违规求助? 2967975
关于积分的说明 8631648
捐赠科研通 2647536
什么是DOI,文献DOI怎么找? 1449654
科研通“疑难数据库(出版商)”最低求助积分说明 671481
邀请新用户注册赠送积分活动 660484