亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting in-hospital mortality in patients with heart failure combined with atrial fibrillation using stacking ensemble model: an analysis of the medical information mart for intensive care IV (MIMIC-IV)

心房颤动 医学 健康信息学 心力衰竭 重症监护 医疗急救 重症监护医学 内科学 急诊医学 心脏病学 公共卫生 护理部
作者
Panpan Chen,Jun-hua Sun,Yingjie Chu,Yujie Zhao
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12911-024-02829-0
摘要

Heart failure (HF) and atrial fibrillation (AF) usually coexist and are associated with a poorer prognosis. This study aimed to develop a model to predict in-hospital mortality in patients with HF combined with AF. Patients with HF and AF were obtained from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database from 2008 to 2019. Feature selection was based on the Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) regression model. Random Forest, eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), K-Nearest Neighbor (KNN) models, and their stacked model (the stacking ensemble model) were established. The area under of the curve (AUC) with 95% confidence interval (CI), sensitivity, specificity, as well as accuracy were applied to assess the performance of the predictive models. A total of 5,998 patients with HF combined with AF were included, of which 4,198 patients were assigned to the training set and 1,800 to the testing set (7:3). Among these 4,198 patients, 624 (14.86%) died in-hospital and 3,574 (85.14%) survived. Twenty-two features were used to construct the predictive model. Among these four single models, the AUC was 0.747 (95%CI: 0.717–0.777) for the Random Forest model, 0.755 (95%CI: 0.725–0.785) for the XGBoost model, 0.754 (95%CI: 0.724–0.784) for the LGBM model, and 0.746 (95%CI: 0.716–0.776) for the KNN model in the testing set. The stacking ensemble model had the highest AUC compared to the four single models, with AUCs of 0.837 (95%CI: 0.821–0.852) and 0.768 (95%CI: 0.740–0.796) for the training set and testing set, respectively. The stacking ensemble model showed a good predictive effect in predicting in-hospital mortality in patients with HF combined with AF and may provide clinicians with a reference tool for early identification of mortality risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJL完成签到 ,获得积分10
刚刚
1秒前
知足的憨人丫丫完成签到,获得积分10
2秒前
4秒前
秋分完成签到,获得积分10
5秒前
ziyewutong完成签到,获得积分10
6秒前
葛怀锐完成签到 ,获得积分10
9秒前
知足的憨人*-*完成签到,获得积分10
10秒前
夏宇航完成签到,获得积分10
16秒前
深情安青应助西格玛采纳,获得30
18秒前
yyyalles发布了新的文献求助10
20秒前
29秒前
31秒前
36秒前
40秒前
森sen完成签到 ,获得积分10
45秒前
夏宇航关注了科研通微信公众号
46秒前
锦慜完成签到 ,获得积分10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
50秒前
大模型应助科研通管家采纳,获得30
50秒前
50秒前
Milton_z完成签到 ,获得积分0
53秒前
劳健龙完成签到 ,获得积分10
54秒前
是啊今夕空闲完成签到,获得积分10
1分钟前
夏宇航发布了新的文献求助10
1分钟前
无灾无难到公卿完成签到,获得积分10
1分钟前
马路完成签到 ,获得积分10
1分钟前
1分钟前
shuiyu完成签到,获得积分10
1分钟前
Dritsw应助Zirong采纳,获得10
1分钟前
wykion完成签到,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
DoctorG发布了新的文献求助10
1分钟前
激情的白枫完成签到 ,获得积分10
1分钟前
酷波er应助DoctorG采纳,获得10
1分钟前
坦率完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965570
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155342
捐赠科研通 3245324
什么是DOI,文献DOI怎么找? 1792823
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176