Predicting in-hospital mortality in patients with heart failure combined with atrial fibrillation using stacking ensemble model: an analysis of the medical information mart for intensive care IV (MIMIC-IV)

心房颤动 医学 健康信息学 心力衰竭 重症监护 医疗急救 重症监护医学 内科学 急诊医学 心脏病学 公共卫生 护理部
作者
Panpan Chen,Jun-hua Sun,Yingjie Chu,Yujie Zhao
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12911-024-02829-0
摘要

Heart failure (HF) and atrial fibrillation (AF) usually coexist and are associated with a poorer prognosis. This study aimed to develop a model to predict in-hospital mortality in patients with HF combined with AF. Patients with HF and AF were obtained from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database from 2008 to 2019. Feature selection was based on the Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) regression model. Random Forest, eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), K-Nearest Neighbor (KNN) models, and their stacked model (the stacking ensemble model) were established. The area under of the curve (AUC) with 95% confidence interval (CI), sensitivity, specificity, as well as accuracy were applied to assess the performance of the predictive models. A total of 5,998 patients with HF combined with AF were included, of which 4,198 patients were assigned to the training set and 1,800 to the testing set (7:3). Among these 4,198 patients, 624 (14.86%) died in-hospital and 3,574 (85.14%) survived. Twenty-two features were used to construct the predictive model. Among these four single models, the AUC was 0.747 (95%CI: 0.717–0.777) for the Random Forest model, 0.755 (95%CI: 0.725–0.785) for the XGBoost model, 0.754 (95%CI: 0.724–0.784) for the LGBM model, and 0.746 (95%CI: 0.716–0.776) for the KNN model in the testing set. The stacking ensemble model had the highest AUC compared to the four single models, with AUCs of 0.837 (95%CI: 0.821–0.852) and 0.768 (95%CI: 0.740–0.796) for the training set and testing set, respectively. The stacking ensemble model showed a good predictive effect in predicting in-hospital mortality in patients with HF combined with AF and may provide clinicians with a reference tool for early identification of mortality risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助duoduo采纳,获得10
刚刚
刚刚
李沐子发布了新的文献求助30
刚刚
1秒前
1秒前
小卒发布了新的文献求助10
2秒前
猫了个喵完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
活力寻菱发布了新的文献求助10
4秒前
5秒前
郁金香发布了新的文献求助10
5秒前
Orange应助欢喜海采纳,获得10
5秒前
赵2002完成签到,获得积分10
5秒前
5秒前
shenglong完成签到,获得积分20
5秒前
研友_Zl1w68完成签到,获得积分10
5秒前
知性的笑柳完成签到,获得积分10
6秒前
fyukgfdyifotrf完成签到,获得积分10
8秒前
lydiaabc发布了新的文献求助10
8秒前
NexusExplorer应助Ler采纳,获得10
9秒前
10秒前
10秒前
xingxingwang发布了新的文献求助10
10秒前
simeng完成签到,获得积分10
10秒前
10秒前
小马发布了新的文献求助10
10秒前
11秒前
聆琳发布了新的文献求助10
12秒前
freemaisui应助knn采纳,获得10
12秒前
醉书生应助西西弗采纳,获得10
12秒前
打打应助nyzcc采纳,获得10
12秒前
13秒前
小卒完成签到,获得积分10
13秒前
13秒前
14秒前
852应助Doctor_Mill采纳,获得50
14秒前
14秒前
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259144
求助须知:如何正确求助?哪些是违规求助? 2900723
关于积分的说明 8312407
捐赠科研通 2570106
什么是DOI,文献DOI怎么找? 1396229
科研通“疑难数据库(出版商)”最低求助积分说明 653443
邀请新用户注册赠送积分活动 631379