纳米笼
化学
催化作用
吸附
氢
碳纤维
化学工程
活动站点
纳米技术
物理化学
材料科学
有机化学
复合数
工程类
复合材料
作者
Jingyi Tian,Minqi Xia,Xueyi Cheng,Chenghui Mao,Yiqun Chen,Yan Zhang,Changkai Zhou,Fengfei Xu,Lijun Yang,Xizhang Wang,Qiang Wu,Zheng Hu
摘要
Engineering microstructures of Pt and understanding the related catalytic mechanism are critical to optimizing the performance for hydrogen evolution reaction (HER). Herein, Pt dispersion and coordination are precisely regulated on hierarchical nitrogen-doped carbon nanocages (hNCNCs) by a thermal-driven Pt migration, from edge-hosted Pt–N2Cl2 single sites in the initial Pt1/hNCNC-70 °C catalyst to Pt clusters/nanoparticles and back to in-plane Pt–NxC4–x single sites. Thereinto, Pt–N2Cl2 presents the optimal HER activity (6 mV@10 mA cm–2) while Pt–NxC4–x shows poor HER activity (321 mV@10 mA cm–2) due to their different Pt coordination. Operando characterizations demonstrate that the low-coordinated Pt–N2 intermediates derived from Pt–N2Cl2 under the working condition are the real active sites for HER, which enable the multi-H adsorption mechanism with an ideal H* adsorption energy of nearly 0 eV, thereby the high activity, as revealed by theoretical calculations. In contrast, the high-coordinated Pt–NxC4–x sites only allow the single-H adsorption with a positive adsorption energy and thereby the low HER activity. Accordingly, with an ultralow Pt loading of only 25 μgPt cm–2, the proton exchange membrane water electrolyzer assembled using Pt1/hNCNC-70 °C as the cathodic catalyst achieves an industrial-level current density of 1.0 A cm–2 at a low cell voltage of 1.66 V and high durability, showing great potential applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI