Deep learning and radiomics for gastric cancer lymph node metastasis: Automated segmentation and multi-machine learning study from two centers

人工智能 深度学习 分割 无线电技术 列线图 计算机科学 机器学习 卷积神经网络 医学 模式识别(心理学) 肿瘤科
作者
Hui Shang,Yue Fang,Yuyang Zhao,Nan Mi,Zhendong Cao,Yi Zheng
出处
期刊:Oncology [S. Karger AG]
卷期号:: 1-20
标识
DOI:10.1159/000544179
摘要

Objective: The objective of this study is to develop an automated method for segmenting spleen computed tomography (CT) images using a deep learning model. This approach is intended to address the limitations of manual segmentation, which is known to be susceptible to inter-observer variability. Subsequently, a prediction model of gastric cancer (GC) lymph node metastasis was constructed in conjunction with radiomics and deep learning features, and a nomogram was generated to explore the clinical guiding significance. Methods: This study enrolled 284 patients with pathologically confirmed GC from two centers. we employed a deep learning model, U-Mamba, to obtain fully automatic segmentation of the spleen CT images. Subsequently, radiomics features and deep learning features were extracted from the entire spleen CT images, and significant features were identified through dimensionality reduction. The clinical features, radiomic features, and deep learning features were organized and integrated, and five machine learning methods were employed to develop 15 predictive models. Ultimately, the model exhibiting superior performance was presented in the form of a nomogram. Results: A total of 12 radiomics features, 17 deep learning features, and 2 clinical features were deemed valuable. The DRC model demonstrated superior discriminative capacity relative to other models. A nomogram was constructed based on the logistic clinical model to facilitate the usage and verification of the clinical model. Conclusion: Radiomics and deep learning features derived from automated spleen segmentation to construct a nomogram demonstrate efficacy in predicting LNM in GC. Concurrently, fully automated segmentation provides a novel and reproducible approach for radiomics research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六水居士发布了新的文献求助10
刚刚
Vivian完成签到,获得积分10
1秒前
隐形曼青应助银河球棒侠采纳,获得10
1秒前
暴躁的梦岚完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
跃鱼发布了新的文献求助10
3秒前
科研菜狗完成签到,获得积分10
3秒前
科研通AI5应助白方明采纳,获得10
3秒前
An.完成签到,获得积分10
4秒前
ypp发布了新的文献求助10
4秒前
4秒前
美满朝雪完成签到,获得积分10
5秒前
笑笑发布了新的文献求助100
5秒前
5秒前
mnmmj发布了新的文献求助10
5秒前
wxx发布了新的文献求助10
5秒前
年年完成签到,获得积分10
5秒前
沉静雪枫完成签到 ,获得积分10
5秒前
6秒前
wendy发布了新的文献求助10
7秒前
星威应助科研通管家采纳,获得20
7秒前
迫切发布了新的文献求助10
7秒前
Cold发布了新的文献求助10
7秒前
djsj应助科研通管家采纳,获得10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487921
求助须知:如何正确求助?哪些是违规求助? 3075778
关于积分的说明 9142221
捐赠科研通 2768019
什么是DOI,文献DOI怎么找? 1518911
邀请新用户注册赠送积分活动 703405
科研通“疑难数据库(出版商)”最低求助积分说明 701862