Deep learning and radiomics for gastric cancer lymph node metastasis: Automated segmentation and multi-machine learning study from two centers

人工智能 深度学习 分割 无线电技术 列线图 计算机科学 机器学习 卷积神经网络 医学 模式识别(心理学) 肿瘤科
作者
Hui Shang,Yue Fang,Yuyang Zhao,Nan Mi,Zhendong Cao,Yi Zheng
出处
期刊:Oncology [Karger Publishers]
卷期号:: 1-20
标识
DOI:10.1159/000544179
摘要

Objective: The objective of this study is to develop an automated method for segmenting spleen computed tomography (CT) images using a deep learning model. This approach is intended to address the limitations of manual segmentation, which is known to be susceptible to inter-observer variability. Subsequently, a prediction model of gastric cancer (GC) lymph node metastasis was constructed in conjunction with radiomics and deep learning features, and a nomogram was generated to explore the clinical guiding significance. Methods: This study enrolled 284 patients with pathologically confirmed GC from two centers. we employed a deep learning model, U-Mamba, to obtain fully automatic segmentation of the spleen CT images. Subsequently, radiomics features and deep learning features were extracted from the entire spleen CT images, and significant features were identified through dimensionality reduction. The clinical features, radiomic features, and deep learning features were organized and integrated, and five machine learning methods were employed to develop 15 predictive models. Ultimately, the model exhibiting superior performance was presented in the form of a nomogram. Results: A total of 12 radiomics features, 17 deep learning features, and 2 clinical features were deemed valuable. The DRC model demonstrated superior discriminative capacity relative to other models. A nomogram was constructed based on the logistic clinical model to facilitate the usage and verification of the clinical model. Conclusion: Radiomics and deep learning features derived from automated spleen segmentation to construct a nomogram demonstrate efficacy in predicting LNM in GC. Concurrently, fully automated segmentation provides a novel and reproducible approach for radiomics research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助lbt采纳,获得10
1秒前
木耶完成签到,获得积分10
2秒前
meng完成签到,获得积分10
2秒前
2秒前
动听的雅绿完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
modernfamilyfan发布了新的文献求助150
4秒前
ylf发布了新的文献求助10
5秒前
烟花应助子车曼香采纳,获得10
6秒前
6秒前
石力完成签到,获得积分10
7秒前
7秒前
7秒前
嘀嘀嘀发布了新的文献求助10
8秒前
胡子木发布了新的文献求助10
8秒前
8秒前
9秒前
Ava应助A8采纳,获得10
9秒前
Moshiqi应助Zixuan采纳,获得10
9秒前
lbt发布了新的文献求助10
9秒前
涂笑-HZAU发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
明理迎曼完成签到,获得积分10
12秒前
12秒前
qpp完成签到,获得积分10
13秒前
13秒前
14秒前
房东家的猫完成签到,获得积分10
14秒前
14秒前
qingxu发布了新的文献求助10
14秒前
modernfamilyfan完成签到,获得积分10
14秒前
shu发布了新的文献求助10
15秒前
王倩倩发布了新的文献求助20
15秒前
wucl1990完成签到,获得积分10
15秒前
爱听歌的人达完成签到,获得积分10
15秒前
peanut发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198