Prolonged use of digital devices and sedentary lifestyles have led to an increase in the prevalence of cervical spondylosis among young people, highlighting the urgent need for preventive measures. Recent advancements in triboelectric nanogenerators (TENGs) have shown their potential as self-powered sensors. In this study, we introduce a novel, flexible, and stretchable TENG for neck movement detection. The proposed TENG utilizes a glycerol/poly(vinyl alcohol) (GL/PVA) hydrogel and silicone rubber (GH-TENG). Through optimization of its concentration and thickness parameters and the use of environmentally friendly dopants, the sensitivity of the GH-TENG was improved to 4.50 V/kPa. Subsequently, we developed a smart neck ring with the proposed sensor for human neck movement monitoring. By leveraging the convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) algorithm, sensor data can be efficiently analyzed in both spatial and temporal dimensions, achieving a promising recognition accuracy of 97.14%. Additionally, we developed a neck motion monitoring system capable of accurately identifying and recording neck movements. The system can timely alert users if they maintain the same neck posture for more than 30 min and provide corresponding recommendations. By deployment on a Raspberry Pi 4B, the system offers a portable and efficient solution for cervical health protection.