Facilitated Self‐Adjusting Mechanism with Mn2+ Additive in Electrolyte for Ammonium‐Ion Hybrid Supercapacitors

电解质 电化学 超级电容器 溶解 阴极 阳极 材料科学 电极 无机化学 化学工程 化学 物理化学 工程类 冶金
作者
Zhenyun Zhao,Yunna Guo,Dongliang Chen,Xu Wang,Lei Deng,Yang Hou,Qinghua Zhang,Zhizhen Ye,Liqiang Zhang,Jianguo Lü
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202410005
摘要

Abstract Ammonium‐ion hybrid supercapacitors (AIHSCs) have gained extensive attention due to their high safety and environmental friendliness. Manganese oxides are among the most promising cathode materials; however, the side electrochemical reactions occurring in aqueous electrolytes limit their reversible capacities and energy densities. This work prepares the β‐/γ‐MnO 2 electrode and reveals the side electrochemical reactions occurring in the (NH 4 ) 2 SO 4 electrolyte. Besides the widely recognized dissolution of MnO 2 , the re‐deposition of MnO 2 and irreversible insertion of NH 4 + exist simultaneously during cycling, resulting in irreversible structural changes of MnO 2 . A portion of β‐/γ‐MnO 2 converts to δ‐MnO 2 , and a layer of 7Mn(OH) 2 ·2MnSO 4 ·H 2 O forms on the electrode surface, modifying the ionic accessibility and structural stability of the electrode. The structural changes, along with the competition among the three types of side reactions, cause capacity decay and uprise during cycling. Accordingly, the self‐adjusting mechanism is proposed, and trace Mn 2+ is added to the electrolyte to facilitate this mechanism, thereby improving performance. Finally, the AIHSC, featuring the MnO 2 cathode and activated carbon anode in the Mn 2+ ‐added (NH 4 ) 2 SO 4 electrolyte, shows 60.2 mAh g −1 at 0.5 A g −1 under 0–2 V. The maximum energy and power densities of 60.2 Wh kg −1 and 5000 W kg −1 are achieved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噗噗完成签到,获得积分10
刚刚
kalah完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
毛豆应助神勇初瑶采纳,获得10
7秒前
自觉的秋蝶完成签到,获得积分10
8秒前
zhenzheng完成签到 ,获得积分10
8秒前
华仔应助kalah采纳,获得10
8秒前
彭于晏应助研友_Ze0vBn采纳,获得10
9秒前
abo发布了新的文献求助10
9秒前
9秒前
shannonxiong完成签到 ,获得积分20
11秒前
王一g完成签到 ,获得积分10
13秒前
16秒前
yifanchen应助abo采纳,获得10
18秒前
duoduo完成签到,获得积分10
20秒前
模糊中正应助糟糕的半鬼采纳,获得20
20秒前
影子完成签到,获得积分10
22秒前
24秒前
啊张应助念与惜采纳,获得10
29秒前
31秒前
迪奥哒应助onia采纳,获得10
31秒前
33秒前
taozhiqi发布了新的文献求助20
34秒前
李健应助饭团不吃鱼采纳,获得10
37秒前
Owen应助lolo采纳,获得10
38秒前
CCCCPUTA完成签到,获得积分10
39秒前
110o发布了新的文献求助10
40秒前
41秒前
41秒前
43秒前
领导范儿应助科研通管家采纳,获得10
43秒前
田様应助科研通管家采纳,获得10
43秒前
星辰大海应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
英俊的铭应助科研通管家采纳,获得10
44秒前
星辰大海应助科研通管家采纳,获得10
44秒前
小鸭子应助科研通管家采纳,获得10
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944898
关于积分的说明 8521939
捐赠科研通 2620639
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650134