From SMILES to Enhanced Molecular Property Prediction: A Unified Multimodal Framework with Predicted 3D Conformers and Contrastive Learning Techniques

构象异构 财产(哲学) 计算机科学 人工智能 自然语言处理 化学 哲学 分子 认识论 有机化学
作者
Long D. Nguyen,Quang H. Nguyen,Quang H. Trinh,Binh P. Nguyen
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:2
标识
DOI:10.1021/acs.jcim.4c01240
摘要

We present a novel molecular property prediction framework that requires only the SMILES format as input but is designed to be multimodal by incorporating predicted 3D conformer representations. Our model captures comprehensive molecular features by leveraging both the sequential character structure of SMILES and the three-dimensional spatial structure of conformers. The framework employs contrastive learning techniques, utilizing InfoNCE loss to align SMILES and conformer embeddings, along with task-specific loss functions, such as ConR for regression and SupCon for classification. To address data imbalance, we incorporate feature distribution smoothing (FDS), a common challenge in drug discovery. We evaluated the framework through multiple case studies, including SARS-CoV-2 drug docking score prediction, molecular property prediction using MoleculeNet data sets, and kinase inhibitor prediction for JAK-1, JAK-2, and MAPK-14 using custom data sets curated from PubChem. The results consistently outperformed state-of-the-art methods, with ConR and FDS significantly improving regression tasks and SupCon enhancing classification performance. These findings highlight the flexibility and robustness of our multimodal model, demonstrating its effectiveness across diverse molecular property prediction tasks, with promising applications in drug discovery and molecular analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟雨完成签到,获得积分10
1秒前
橘灯发布了新的文献求助100
2秒前
五木发布了新的文献求助30
3秒前
plain发布了新的文献求助10
4秒前
小王发布了新的文献求助10
4秒前
领导范儿应助HORSE047采纳,获得10
4秒前
5秒前
英姑应助小鱼儿采纳,获得10
7秒前
丰富的复天完成签到,获得积分10
8秒前
huai完成签到,获得积分10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
知许解夏应助科研通管家采纳,获得10
9秒前
香蕉觅云应助easymoney采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
10秒前
可可应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得30
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
可可应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
余真谛应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
CyrusSo524发布了新的文献求助30
11秒前
李帅发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966444
求助须知:如何正确求助?哪些是违规求助? 3511885
关于积分的说明 11160462
捐赠科研通 3246599
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804388