Self-adaptive weighted physics-informed neural networks for inferring bubble motion in two-phase flow

物理 气泡 两相流 多相流 稳健性(进化) 偏微分方程 人工神经网络 启发式 计算 流体力学 分手 流量(数学) 边值问题 压缩性 应用数学 机械 计算机科学 算法 人工智能 数学 生物化学 化学 量子力学 基因
作者
Min Dai,Jiping Tao,Yi Zhao,Fei Xing
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12)
标识
DOI:10.1063/5.0238321
摘要

Modeling complex fluid flow using machine learning is increasingly recognized as a valuable approach for revealing multiphase fluid phenomena. Bubble dynamics represent a classical two-phase flow problem that plays a crucial role in various engineering domains. In this paper, physics-informed neural networks (PINNs) are applied to facilitate incompressible two-phase bubble motion modeling by integrating governing equations and interface evolution equations. The loss function of PINNs consists of multiple loss terms, including initial and boundary conditions constraints, partial differential equations residuals, and volume fraction constraints. The performance of PINNs is influenced by the competing effects of these loss terms. Therefore, we introduce a heuristic adaptive weights approach to automatically adjust loss weights for each training point, avoiding manual tuning and improving the accuracy of PINNs. We investigate typical bubble motion cases, specifically focusing on bubble rising and breakup, to showcase the capabilities of the proposed method. We explore the impact of weights and present the results in comparison to the baselines. Through the bubble breakup case, we illustrate that our model shows superior performance even with more complex scenarios. Then we further discuss the generalization and robustness of our model, showing their indispensability over traditional solvers in gas–liquid two-phase systems. Specifically, we accelerate computation speed in transfer learning without the need to modify the original model. We also show that our method effectively solves ill-posed problems, such as those without initial data or with incomplete or noisy boundary conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力的尔蓉完成签到,获得积分10
2秒前
Janet_Jing完成签到 ,获得积分10
5秒前
5秒前
嗯哼应助阿钉采纳,获得20
6秒前
8秒前
NexusExplorer应助jk...采纳,获得10
8秒前
8秒前
调研昵称发布了新的文献求助10
11秒前
锐哥发布了新的文献求助10
13秒前
17秒前
一束澳梅完成签到,获得积分10
17秒前
17秒前
在水一方应助壮观的斑马采纳,获得10
18秒前
JamesPei应助电催化领头羊采纳,获得10
18秒前
20秒前
FashionBoy应助zhencheng采纳,获得10
21秒前
jk...发布了新的文献求助10
22秒前
Gracezzz发布了新的文献求助10
24秒前
感动世倌完成签到,获得积分20
25秒前
25秒前
25秒前
今后应助曾经阁采纳,获得10
25秒前
明月清风完成签到,获得积分10
26秒前
30秒前
ZengLY完成签到 ,获得积分10
31秒前
至秦发布了新的文献求助10
31秒前
33秒前
34秒前
zhencheng完成签到,获得积分10
34秒前
34秒前
汤汤发布了新的文献求助10
37秒前
火星发布了新的文献求助10
39秒前
39秒前
退场发布了新的文献求助10
40秒前
41秒前
xw发布了新的文献求助10
44秒前
44秒前
无味完成签到 ,获得积分10
45秒前
45秒前
wanci应助yzbj采纳,获得10
46秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3325350
求助须知:如何正确求助?哪些是违规求助? 2956011
关于积分的说明 8578775
捐赠科研通 2633929
什么是DOI,文献DOI怎么找? 1441572
科研通“疑难数据库(出版商)”最低求助积分说明 667885
邀请新用户注册赠送积分活动 654623