Self-adaptive weighted physics-informed neural networks for inferring bubble motion in two-phase flow

物理 气泡 两相流 多相流 稳健性(进化) 偏微分方程 人工神经网络 启发式 计算 流体力学 分手 流量(数学) 边值问题 压缩性 应用数学 机械 计算机科学 算法 人工智能 数学 生物化学 化学 量子力学 基因
作者
Min Dai,Jiping Tao,Yi Zhao,Fei Xing
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12)
标识
DOI:10.1063/5.0238321
摘要

Modeling complex fluid flow using machine learning is increasingly recognized as a valuable approach for revealing multiphase fluid phenomena. Bubble dynamics represent a classical two-phase flow problem that plays a crucial role in various engineering domains. In this paper, physics-informed neural networks (PINNs) are applied to facilitate incompressible two-phase bubble motion modeling by integrating governing equations and interface evolution equations. The loss function of PINNs consists of multiple loss terms, including initial and boundary conditions constraints, partial differential equations residuals, and volume fraction constraints. The performance of PINNs is influenced by the competing effects of these loss terms. Therefore, we introduce a heuristic adaptive weights approach to automatically adjust loss weights for each training point, avoiding manual tuning and improving the accuracy of PINNs. We investigate typical bubble motion cases, specifically focusing on bubble rising and breakup, to showcase the capabilities of the proposed method. We explore the impact of weights and present the results in comparison to the baselines. Through the bubble breakup case, we illustrate that our model shows superior performance even with more complex scenarios. Then we further discuss the generalization and robustness of our model, showing their indispensability over traditional solvers in gas–liquid two-phase systems. Specifically, we accelerate computation speed in transfer learning without the need to modify the original model. We also show that our method effectively solves ill-posed problems, such as those without initial data or with incomplete or noisy boundary conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助huyz采纳,获得10
1秒前
大大彬完成签到 ,获得积分10
3秒前
ZZZ发布了新的文献求助10
3秒前
CipherSage应助一一采纳,获得10
3秒前
的的的墨完成签到,获得积分10
4秒前
5秒前
娇气的问雁完成签到,获得积分10
7秒前
阿童木完成签到,获得积分10
8秒前
清爽的板凳完成签到,获得积分10
8秒前
乐乐应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
ED应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
QQQQ完成签到 ,获得积分10
12秒前
16秒前
17秒前
liuzhen发布了新的文献求助10
17秒前
17秒前
wang发布了新的文献求助10
17秒前
18秒前
Unbelievable完成签到,获得积分10
19秒前
19秒前
21秒前
yzbbb发布了新的文献求助30
21秒前
22秒前
学术大亨发布了新的文献求助10
23秒前
踏实奇异果完成签到,获得积分10
23秒前
23秒前
老阎应助混沌采纳,获得30
23秒前
24秒前
FFF发布了新的文献求助10
26秒前
倪塔宝贝完成签到 ,获得积分10
26秒前
彭于晏应助liuzhen采纳,获得10
27秒前
27秒前
Behumble完成签到,获得积分10
28秒前
渊思发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511567
关于积分的说明 11158912
捐赠科研通 3246169
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343