Estimation of machine learning-based models to predict dementia risk in patients with atherosclerotic cardiovascular diseases: a UK Biobank study (Preprint)

生命银行 预印本 痴呆 估计 医学 计算机科学 工程类 内科学 生物信息学 疾病 万维网 系统工程 生物
作者
Z. N. Gu,Shuang Liu,Huijuan Ma,Yujuan Long,Xuehao Jiao,Xin Gao,Bingying Du,Xiaoying Bi,Xingjie Shi
出处
期刊:JMIR aging [JMIR Publications Inc.]
卷期号:8: e64148-e64148
标识
DOI:10.2196/64148
摘要

Background The atherosclerotic cardiovascular disease (ASCVD) is associated with dementia. However, the risk factors of dementia in patients with ASCVD remain unclear, necessitating the development of accurate prediction models. Objective The aim of the study is to develop a machine learning model for use in patients with ASCVD to predict dementia risk using available clinical and sociodemographic data. Methods This prognostic study included patients with ASCVD between 2006 and 2010, with registration of follow-up data ending on April 2023 based on the UK Biobank. We implemented a data-driven strategy, identifying predictors from 316 variables and developing a machine learning model to predict the risk of incident dementia, Alzheimer disease, and vascular dementia within 5, 10, and longer-term follow-up in patients with ASCVD. Results A total of 29,561 patients with ASCVD were included, and 1334 (4.51%) developed dementia during a median follow-up time of 10.3 (IQR 7.6-12.4) years. The best prediction model (UK Biobank ASCVD risk prediction model) was light gradient boosting machine, comprising 10 predictors including age, time to complete pairs matching tasks, mean time to correctly identify matches, mean sphered cell volume, glucose levels, forced expiratory volume in 1 second z score, C-reactive protein, forced vital capacity, time engaging in activities, and age first had sexual intercourse. This model achieved the following performance metrics for all incident dementia: area under the receiver operating characteristic curve: mean 0.866 (SD 0.027), accuracy: mean 0.883 (SD 0.010), sensitivity: mean 0.637 (SD 0.084), specificity: mean 0.914 (SD 0.012), precision: mean 0.479 (SD 0.031), and F1-score: mean 0.546 (SD 0.043). Meanwhile, this model was well-calibrated (Kolmogorov-Smirnov test showed goodness-of-fit P value>.99) and maintained robust performance across different temporal cohorts. Besides, the model had a beneficial potential in clinical practice with a decision curve analysis. Conclusions The findings of this study suggest that predictive modeling could inform patients and clinicians about ASCVD at risk for dementia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy完成签到 ,获得积分10
刚刚
少喝水呀完成签到 ,获得积分10
1秒前
哈密瓜完成签到,获得积分10
4秒前
为为发布了新的文献求助10
4秒前
bzdjsmw完成签到 ,获得积分10
6秒前
高分子完成签到,获得积分10
8秒前
cherry完成签到 ,获得积分10
18秒前
18秒前
深情安青应助隔水一路秋采纳,获得10
19秒前
文静的大象完成签到 ,获得积分10
23秒前
23秒前
24秒前
3301发布了新的文献求助10
29秒前
cadcae发布了新的文献求助10
33秒前
33秒前
好人一生平安完成签到,获得积分10
33秒前
嬗变的天秤完成签到,获得积分10
34秒前
不是省油的灯完成签到,获得积分10
42秒前
壮观复天完成签到 ,获得积分10
43秒前
自由的中蓝完成签到 ,获得积分10
43秒前
酷酷含桃完成签到,获得积分10
44秒前
hehuan0520完成签到,获得积分10
44秒前
rhq完成签到 ,获得积分10
46秒前
细腻的梦蕊应助酷酷含桃采纳,获得10
48秒前
why完成签到,获得积分10
49秒前
50秒前
萤火虫完成签到,获得积分10
56秒前
cadcae完成签到,获得积分10
57秒前
lyt完成签到 ,获得积分10
57秒前
YR完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
大气建辉完成签到 ,获得积分10
1分钟前
自由念露完成签到 ,获得积分10
1分钟前
研友_851KE8发布了新的文献求助10
1分钟前
bing完成签到,获得积分10
1分钟前
1分钟前
puhu应助科研通管家采纳,获得10
1分钟前
puhu应助科研通管家采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571361
求助须知:如何正确求助?哪些是违规求助? 3141938
关于积分的说明 9445003
捐赠科研通 2843388
什么是DOI,文献DOI怎么找? 1562837
邀请新用户注册赠送积分活动 731366
科研通“疑难数据库(出版商)”最低求助积分说明 718524