A Machine Learning Model for Predicting Prognosis in HCC Patients With Diabetes After TACE

糖尿病 医学 内科学 人工智能 肿瘤科 机器学习 计算机科学 内分泌学
作者
Linxia Wu,Lei Chen,Lijie Zhang,Yiming Liu,Davy Xuesong Ouyang,Wenlong Wu,Lei Yu,Ping Han,Huangxuan Zhao,Chuansheng Zheng
出处
期刊:Journal of Hepatocellular Carcinoma [Dove Medical Press]
卷期号:Volume 12: 77-91
标识
DOI:10.2147/jhc.s496481
摘要

Purpose: Type II diabetes mellitus (T2DM) has been found to increase the mortality of patients with hepatocellular carcinoma (HCC).Therefore, this study aimed to establish and validate a machine learning-based explainable prediction model of prognosis in patients with HCC and T2DM undergoing transarterial chemoembolization (TACE).Patients and Methods: The prediction model was developed using data from the derivation cohort comprising patients from three medical centers, followed by external validation utilizing patient data extracted from another center.Further, five predictive models were employed to establish prognosis models for 1-, 2-, and 3-year survival, respectively.Prediction performance was assessed by the receiver operating characteristic (ROC), calibration, and decision curve analysis curves.Lastly, the SHapley Additive exPlanations (SHAP) method was used to interpret the final ML model.Results: A total of 636 patients were included.Thirteen variables were selected for the model development.The final random survival forest (RSF) model exhibited excellent performance in the internal validation cohort, with areas under the ROC curve (AUCs) of 0.824, 0.853, and 0.810 in the 1-, 2-, and 3-year survival groups, respectively.This model also demonstrated remarkable discrimination in the external validation cohort, achieving AUCs of 0.862, 0.815, and 0.798 in the 1-, 2-, and 3-year survival groups, respectively.SHAP summary plots were also created to interpret the RSF model.Conclusion: An RSF model with good predictive performance was developed by incorporating simple parameters.This prognostic prediction model may assist physicians in early clinical intervention and improve prognosis outcomes in patients with HCC and comorbid T2DM after TACE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助XiaHeyun采纳,获得10
2秒前
2秒前
hyominhsu完成签到,获得积分10
2秒前
科研通AI5应助清森采纳,获得10
3秒前
摘要发布了新的文献求助10
4秒前
yml完成签到 ,获得积分10
4秒前
6秒前
6秒前
cy5982发布了新的文献求助10
7秒前
7秒前
8秒前
直率的玉米完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
丘比特应助SCI采纳,获得10
10秒前
小胖子完成签到 ,获得积分10
12秒前
sjm1311218发布了新的文献求助10
12秒前
12秒前
sahjdkah发布了新的文献求助10
13秒前
小小完成签到 ,获得积分10
14秒前
wangglin完成签到,获得积分10
14秒前
显隐发布了新的文献求助10
14秒前
海盗发布了新的文献求助10
15秒前
自由的乌发布了新的文献求助10
17秒前
FashionBoy应助科研kkkkkkkk采纳,获得10
19秒前
21秒前
Aline完成签到,获得积分10
22秒前
CMJ发布了新的文献求助30
23秒前
wyp大魔王完成签到,获得积分20
23秒前
哼哼完成签到 ,获得积分10
24秒前
24秒前
思源应助海盗采纳,获得10
24秒前
122x完成签到 ,获得积分10
25秒前
stinkyfish发布了新的文献求助10
28秒前
qq发布了新的文献求助10
29秒前
30秒前
34秒前
gong发布了新的文献求助10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3581642
求助须知:如何正确求助?哪些是违规求助? 3151221
关于积分的说明 9486747
捐赠科研通 2853171
什么是DOI,文献DOI怎么找? 1568512
邀请新用户注册赠送积分活动 734709
科研通“疑难数据库(出版商)”最低求助积分说明 720769