Till Tech Do Us Part: Betrayal Aversion and Its Role in Algorithm Use

背叛 收益 经济 建议(编程) 风险厌恶(心理学) 精算学 计算机科学 业务 心理学 社会心理学 财务 金融经济学 期望效用假设 程序设计语言
作者
Cameron Kormylo,Idris Adjerid,Sheryl Ball,Can Dogan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.03510
摘要

Failing to follow expert advice can have real and dangerous consequences. While any number of factors may lead a decision maker to refuse expert advice, the proliferation of algorithmic experts has further complicated the issue. One potential mechanism that restricts the acceptance of expert advice is betrayal aversion, or the strong dislike for the violation of trust norms. This study explores whether the introduction of expert algorithms in place of human experts can attenuate betrayal aversion and lead to higher overall rates of seeking expert advice. In other words, we ask: are decision makers averse to algorithmic betrayal? The answer to this question is uncertain ex ante. We answer this question through an experimental financial market where there is an identical risk of betrayal from either a human or algorithmic financial advisor. We find that the willingness to delegate to human experts is significantly reduced by betrayal aversion, while no betrayal aversion is exhibited toward algorithmic experts. The impact of betrayal aversion toward financial advisors is considerable: the resulting unwillingness to take the advice of the human expert leads to a 20% decrease in subsequent earnings, while no loss in earnings is observed in the algorithmic expert condition. This study has significant implications for firms, policymakers, and consumers, specifically in the financial services industry. This paper has been This paper was accepted by D. J. Wu for the Special Issue on the Human-Algorithm Connection. Funding: This work was supported by National Science Foundation [Grant 1541105]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.03510 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独白。发布了新的文献求助10
刚刚
刚刚
ramu完成签到,获得积分10
刚刚
Andy_Cheung应助有魅力的井采纳,获得10
1秒前
1秒前
温柔的尔芙完成签到,获得积分10
1秒前
heya发布了新的文献求助10
1秒前
1秒前
121231233应助朴实冷之采纳,获得10
1秒前
劲秉应助动人的含灵采纳,获得20
2秒前
WK完成签到,获得积分10
2秒前
苏一完成签到,获得积分10
2秒前
学习中的呜哩哇啦完成签到,获得积分10
2秒前
小蘑菇应助冷静鑫鹏采纳,获得10
2秒前
劼大大完成签到,获得积分10
3秒前
3秒前
布拉布拉完成签到,获得积分10
3秒前
3秒前
共享精神应助自由的自中采纳,获得10
3秒前
4秒前
爆米花应助guoyuheng采纳,获得10
4秒前
4秒前
我是笨蛋完成签到 ,获得积分10
5秒前
5秒前
lqz07发布了新的文献求助10
5秒前
芒琪完成签到,获得积分10
5秒前
shelemi发布了新的文献求助10
6秒前
syangZ完成签到,获得积分10
6秒前
hans应助Jiaxin_Wu采纳,获得10
6秒前
大方友容发布了新的文献求助10
6秒前
6秒前
6秒前
Jason完成签到,获得积分10
7秒前
顾某发布了新的文献求助10
7秒前
闲鱼嫌鱼咸完成签到,获得积分10
7秒前
8秒前
8秒前
嘚嘚发布了新的文献求助30
8秒前
9秒前
热心的皮完成签到 ,获得积分10
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729613
求助须知:如何正确求助?哪些是违规求助? 3274653
关于积分的说明 9987684
捐赠科研通 2989926
什么是DOI,文献DOI怎么找? 1640809
邀请新用户注册赠送积分活动 779408
科研通“疑难数据库(出版商)”最低求助积分说明 748217