清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Till Tech Do Us Part: Betrayal Aversion and Its Role in Algorithm Use

背叛 收益 经济 建议(编程) 风险厌恶(心理学) 精算学 计算机科学 业务 心理学 社会心理学 财务 金融经济学 期望效用假设 程序设计语言
作者
Cameron Kormylo,Idris Adjerid,Sheryl Ball,Can Dogan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:3
标识
DOI:10.1287/mnsc.2022.03510
摘要

Failing to follow expert advice can have real and dangerous consequences. While any number of factors may lead a decision maker to refuse expert advice, the proliferation of algorithmic experts has further complicated the issue. One potential mechanism that restricts the acceptance of expert advice is betrayal aversion, or the strong dislike for the violation of trust norms. This study explores whether the introduction of expert algorithms in place of human experts can attenuate betrayal aversion and lead to higher overall rates of seeking expert advice. In other words, we ask: are decision makers averse to algorithmic betrayal? The answer to this question is uncertain ex ante. We answer this question through an experimental financial market where there is an identical risk of betrayal from either a human or algorithmic financial advisor. We find that the willingness to delegate to human experts is significantly reduced by betrayal aversion, while no betrayal aversion is exhibited toward algorithmic experts. The impact of betrayal aversion toward financial advisors is considerable: the resulting unwillingness to take the advice of the human expert leads to a 20% decrease in subsequent earnings, while no loss in earnings is observed in the algorithmic expert condition. This study has significant implications for firms, policymakers, and consumers, specifically in the financial services industry. This paper has been This paper was accepted by D. J. Wu for the Special Issue on the Human-Algorithm Connection. Funding: This work was supported by National Science Foundation [Grant 1541105]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.03510 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xwy发布了新的文献求助10
5秒前
神秘猎牛人应助乐观之瑶采纳,获得10
8秒前
冉亦完成签到,获得积分10
15秒前
星际舟完成签到,获得积分10
31秒前
39秒前
shhoing应助科研通管家采纳,获得10
52秒前
52秒前
Akim应助科研通管家采纳,获得10
52秒前
十七岁男高中生完成签到 ,获得积分10
1分钟前
Hazel完成签到,获得积分20
1分钟前
1分钟前
Hazel发布了新的文献求助10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zly完成签到 ,获得积分10
2分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
神秘猎牛人应助daizao采纳,获得10
3分钟前
鲑鱼完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
外星人发布了新的文献求助10
4分钟前
4分钟前
SciGPT应助Kashing采纳,获得10
4分钟前
5分钟前
xwy完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
Kashing发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
Mine完成签到,获得积分10
6分钟前
香蕉觅云应助乐观之瑶采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538845
求助须知:如何正确求助?哪些是违规求助? 4625835
关于积分的说明 14596950
捐赠科研通 4566541
什么是DOI,文献DOI怎么找? 2503357
邀请新用户注册赠送积分活动 1481421
关于科研通互助平台的介绍 1452856