Till Tech Do Us Part: Betrayal Aversion and Its Role in Algorithm Use

背叛 收益 经济 建议(编程) 风险厌恶(心理学) 精算学 计算机科学 业务 心理学 社会心理学 财务 金融经济学 期望效用假设 程序设计语言
作者
Cameron Kormylo,Idris Adjerid,Sheryl Ball,Can Dogan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:3
标识
DOI:10.1287/mnsc.2022.03510
摘要

Failing to follow expert advice can have real and dangerous consequences. While any number of factors may lead a decision maker to refuse expert advice, the proliferation of algorithmic experts has further complicated the issue. One potential mechanism that restricts the acceptance of expert advice is betrayal aversion, or the strong dislike for the violation of trust norms. This study explores whether the introduction of expert algorithms in place of human experts can attenuate betrayal aversion and lead to higher overall rates of seeking expert advice. In other words, we ask: are decision makers averse to algorithmic betrayal? The answer to this question is uncertain ex ante. We answer this question through an experimental financial market where there is an identical risk of betrayal from either a human or algorithmic financial advisor. We find that the willingness to delegate to human experts is significantly reduced by betrayal aversion, while no betrayal aversion is exhibited toward algorithmic experts. The impact of betrayal aversion toward financial advisors is considerable: the resulting unwillingness to take the advice of the human expert leads to a 20% decrease in subsequent earnings, while no loss in earnings is observed in the algorithmic expert condition. This study has significant implications for firms, policymakers, and consumers, specifically in the financial services industry. This paper has been This paper was accepted by D. J. Wu for the Special Issue on the Human-Algorithm Connection. Funding: This work was supported by National Science Foundation [Grant 1541105]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.03510 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十一的耳朵不是特别好完成签到,获得积分10
1秒前
机灵水卉发布了新的文献求助10
1秒前
桐桐应助夕荀采纳,获得10
1秒前
自然沁完成签到,获得积分10
2秒前
2秒前
我爱学习完成签到,获得积分10
3秒前
贲孱完成签到,获得积分10
3秒前
无风之旅完成签到,获得积分10
3秒前
pio发布了新的文献求助10
3秒前
renkemaomao完成签到,获得积分10
3秒前
gaoww完成签到,获得积分10
4秒前
哈牛柚子鹿完成签到,获得积分10
4秒前
章鱼小丸子完成签到,获得积分10
4秒前
那小子真帅完成签到,获得积分10
5秒前
5秒前
方hh完成签到,获得积分10
5秒前
SaSa完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
zhuling发布了新的文献求助10
5秒前
派大星发布了新的文献求助10
5秒前
深年完成签到,获得积分10
5秒前
huangbing123完成签到 ,获得积分10
5秒前
liuye0202完成签到,获得积分10
6秒前
稳重的冰薇完成签到,获得积分10
6秒前
7秒前
顺利的冰海完成签到,获得积分10
7秒前
干净冰露完成签到,获得积分20
7秒前
洪汉完成签到,获得积分10
8秒前
天天快乐应助AL采纳,获得10
8秒前
milly完成签到,获得积分10
8秒前
搞科研的静静完成签到,获得积分10
8秒前
文轩完成签到,获得积分10
8秒前
星辰大海应助无辜的薯片采纳,获得10
8秒前
小孙完成签到,获得积分20
8秒前
KL发布了新的文献求助10
8秒前
迷人宛完成签到,获得积分10
8秒前
ZCM完成签到,获得积分10
8秒前
AI imaging完成签到,获得积分10
9秒前
彭于晏应助九月鹰飞采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977