已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Till Tech Do Us Part: Betrayal Aversion and Its Role in Algorithm Use

背叛 收益 经济 建议(编程) 风险厌恶(心理学) 精算学 计算机科学 业务 心理学 社会心理学 财务 金融经济学 期望效用假设 程序设计语言
作者
Cameron Kormylo,Idris Adjerid,Sheryl Ball,Can Dogan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.03510
摘要

Failing to follow expert advice can have real and dangerous consequences. While any number of factors may lead a decision maker to refuse expert advice, the proliferation of algorithmic experts has further complicated the issue. One potential mechanism that restricts the acceptance of expert advice is betrayal aversion, or the strong dislike for the violation of trust norms. This study explores whether the introduction of expert algorithms in place of human experts can attenuate betrayal aversion and lead to higher overall rates of seeking expert advice. In other words, we ask: are decision makers averse to algorithmic betrayal? The answer to this question is uncertain ex ante. We answer this question through an experimental financial market where there is an identical risk of betrayal from either a human or algorithmic financial advisor. We find that the willingness to delegate to human experts is significantly reduced by betrayal aversion, while no betrayal aversion is exhibited toward algorithmic experts. The impact of betrayal aversion toward financial advisors is considerable: the resulting unwillingness to take the advice of the human expert leads to a 20% decrease in subsequent earnings, while no loss in earnings is observed in the algorithmic expert condition. This study has significant implications for firms, policymakers, and consumers, specifically in the financial services industry. This paper has been This paper was accepted by D. J. Wu for the Special Issue on the Human-Algorithm Connection. Funding: This work was supported by National Science Foundation [Grant 1541105]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.03510 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy完成签到,获得积分10
1秒前
阿乌大王完成签到,获得积分10
5秒前
chen完成签到,获得积分10
5秒前
隐形曼青应助萤照夜清采纳,获得10
8秒前
慕玖淇完成签到 ,获得积分10
9秒前
看不了一点文献应助shinn采纳,获得50
9秒前
佳期完成签到,获得积分10
10秒前
飞逝的快乐时光完成签到 ,获得积分10
13秒前
azorworld6完成签到,获得积分20
14秒前
14秒前
江梦松完成签到,获得积分10
14秒前
佳期发布了新的文献求助10
14秒前
16秒前
19秒前
19秒前
tmrrr发布了新的文献求助10
19秒前
jasonjiang完成签到 ,获得积分0
19秒前
21秒前
小二郎应助小丸子采纳,获得10
22秒前
球球发布了新的文献求助10
23秒前
HS发布了新的文献求助10
24秒前
难过的疾发布了新的文献求助10
24秒前
25秒前
tinna完成签到,获得积分10
25秒前
28秒前
看不了一点文献应助shinn采纳,获得30
29秒前
29秒前
zd发布了新的文献求助10
29秒前
30秒前
大西瓜完成签到,获得积分10
30秒前
Liufgui应助巫寻采纳,获得20
32秒前
56565完成签到,获得积分20
32秒前
没有名字完成签到,获得积分10
33秒前
小丸子发布了新的文献求助10
34秒前
you完成签到 ,获得积分10
34秒前
Akim应助zd采纳,获得10
34秒前
35秒前
华仔应助www采纳,获得10
36秒前
深情安青应助chris采纳,获得10
38秒前
645654564完成签到,获得积分20
39秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980612
求助须知:如何正确求助?哪些是违规求助? 3524500
关于积分的说明 11221687
捐赠科研通 3261917
什么是DOI,文献DOI怎么找? 1800975
邀请新用户注册赠送积分活动 879568
科研通“疑难数据库(出版商)”最低求助积分说明 807320