Till Tech Do Us Part: Betrayal Aversion and Its Role in Algorithm Use

背叛 收益 经济 建议(编程) 风险厌恶(心理学) 精算学 计算机科学 业务 心理学 社会心理学 财务 金融经济学 期望效用假设 程序设计语言
作者
Cameron Kormylo,Idris Adjerid,Sheryl Ball,Can Dogan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.03510
摘要

Failing to follow expert advice can have real and dangerous consequences. While any number of factors may lead a decision maker to refuse expert advice, the proliferation of algorithmic experts has further complicated the issue. One potential mechanism that restricts the acceptance of expert advice is betrayal aversion, or the strong dislike for the violation of trust norms. This study explores whether the introduction of expert algorithms in place of human experts can attenuate betrayal aversion and lead to higher overall rates of seeking expert advice. In other words, we ask: are decision makers averse to algorithmic betrayal? The answer to this question is uncertain ex ante. We answer this question through an experimental financial market where there is an identical risk of betrayal from either a human or algorithmic financial advisor. We find that the willingness to delegate to human experts is significantly reduced by betrayal aversion, while no betrayal aversion is exhibited toward algorithmic experts. The impact of betrayal aversion toward financial advisors is considerable: the resulting unwillingness to take the advice of the human expert leads to a 20% decrease in subsequent earnings, while no loss in earnings is observed in the algorithmic expert condition. This study has significant implications for firms, policymakers, and consumers, specifically in the financial services industry. This paper has been This paper was accepted by D. J. Wu for the Special Issue on the Human-Algorithm Connection. Funding: This work was supported by National Science Foundation [Grant 1541105]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.03510 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Orange应助jerry采纳,获得10
1秒前
ZhouTY发布了新的文献求助10
1秒前
研友_VZG7GZ应助王洋采纳,获得10
1秒前
1秒前
woseaco发布了新的文献求助30
2秒前
Aaaaa发布了新的文献求助10
2秒前
大菊完成签到,获得积分10
2秒前
2秒前
wanci应助lushuang采纳,获得10
3秒前
有一个盆完成签到,获得积分10
4秒前
闲来逛逛007完成签到 ,获得积分10
4秒前
4秒前
4秒前
bkagyin应助ycliu采纳,获得10
4秒前
4秒前
江小鱼在查文献完成签到,获得积分10
5秒前
Srishti完成签到,获得积分10
5秒前
taotao发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
我是老大应助野椒搞科研采纳,获得10
8秒前
Shan发布了新的文献求助10
8秒前
哈哈哈发布了新的文献求助10
8秒前
共享精神应助豆芽采纳,获得10
8秒前
8秒前
小黄在忙发布了新的文献求助10
9秒前
liningyao发布了新的文献求助10
9秒前
9秒前
9秒前
华仔应助222333采纳,获得10
9秒前
科研通AI6应助啊棕采纳,获得10
9秒前
123发布了新的文献求助10
10秒前
wanci应助Aaaaa采纳,获得10
10秒前
像只猫完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960295
求助须知:如何正确求助?哪些是违规求助? 4220812
关于积分的说明 13144476
捐赠科研通 4004657
什么是DOI,文献DOI怎么找? 2191579
邀请新用户注册赠送积分活动 1205760
关于科研通互助平台的介绍 1116920