Till Tech Do Us Part: Betrayal Aversion and Its Role in Algorithm Use

背叛 收益 经济 建议(编程) 风险厌恶(心理学) 精算学 计算机科学 业务 心理学 社会心理学 财务 金融经济学 期望效用假设 程序设计语言
作者
Cameron Kormylo,Idris Adjerid,Sheryl Ball,Can Dogan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.03510
摘要

Failing to follow expert advice can have real and dangerous consequences. While any number of factors may lead a decision maker to refuse expert advice, the proliferation of algorithmic experts has further complicated the issue. One potential mechanism that restricts the acceptance of expert advice is betrayal aversion, or the strong dislike for the violation of trust norms. This study explores whether the introduction of expert algorithms in place of human experts can attenuate betrayal aversion and lead to higher overall rates of seeking expert advice. In other words, we ask: are decision makers averse to algorithmic betrayal? The answer to this question is uncertain ex ante. We answer this question through an experimental financial market where there is an identical risk of betrayal from either a human or algorithmic financial advisor. We find that the willingness to delegate to human experts is significantly reduced by betrayal aversion, while no betrayal aversion is exhibited toward algorithmic experts. The impact of betrayal aversion toward financial advisors is considerable: the resulting unwillingness to take the advice of the human expert leads to a 20% decrease in subsequent earnings, while no loss in earnings is observed in the algorithmic expert condition. This study has significant implications for firms, policymakers, and consumers, specifically in the financial services industry. This paper has been This paper was accepted by D. J. Wu for the Special Issue on the Human-Algorithm Connection. Funding: This work was supported by National Science Foundation [Grant 1541105]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.03510 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
arabidopsis完成签到,获得积分10
1秒前
1秒前
cyq完成签到,获得积分10
1秒前
Demon完成签到,获得积分10
1秒前
2秒前
JF完成签到,获得积分10
2秒前
落后的涵柳关注了科研通微信公众号
2秒前
乐观期待发布了新的文献求助10
3秒前
Selkie发布了新的文献求助10
4秒前
5秒前
浅邪君发布了新的文献求助10
5秒前
yyds完成签到,获得积分10
5秒前
5秒前
Hammerdai发布了新的文献求助10
6秒前
整齐思松完成签到 ,获得积分10
6秒前
6秒前
喜悦尔琴发布了新的文献求助10
8秒前
黄志敏完成签到,获得积分10
8秒前
ZZ完成签到,获得积分10
8秒前
8秒前
moyang完成签到,获得积分10
9秒前
哎呦哎发布了新的文献求助10
10秒前
天天快乐应助浅邪君采纳,获得10
10秒前
JamesPei应助小青采纳,获得10
10秒前
Selkie完成签到,获得积分10
11秒前
songnvshi发布了新的文献求助10
11秒前
英俊的铭应助cole采纳,获得10
11秒前
卡拉米发布了新的文献求助10
11秒前
白白白发布了新的文献求助10
12秒前
13秒前
逍遥自在完成签到,获得积分10
13秒前
结实的含烟完成签到,获得积分10
13秒前
1433223完成签到,获得积分10
13秒前
14秒前
14秒前
nn完成签到,获得积分10
14秒前
BREEZE发布了新的文献求助20
14秒前
我是老大应助呃呃呃呃呃采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3468500
求助须知:如何正确求助?哪些是违规求助? 3061511
关于积分的说明 9076173
捐赠科研通 2751826
什么是DOI,文献DOI怎么找? 1510177
科研通“疑难数据库(出版商)”最低求助积分说明 697656
邀请新用户注册赠送积分活动 697641