已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Till Tech Do Us Part: Betrayal Aversion and Its Role in Algorithm Use

背叛 收益 经济 建议(编程) 风险厌恶(心理学) 精算学 计算机科学 业务 心理学 社会心理学 财务 金融经济学 期望效用假设 程序设计语言
作者
Cameron Kormylo,Idris Adjerid,Sheryl Ball,Can Dogan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:3
标识
DOI:10.1287/mnsc.2022.03510
摘要

Failing to follow expert advice can have real and dangerous consequences. While any number of factors may lead a decision maker to refuse expert advice, the proliferation of algorithmic experts has further complicated the issue. One potential mechanism that restricts the acceptance of expert advice is betrayal aversion, or the strong dislike for the violation of trust norms. This study explores whether the introduction of expert algorithms in place of human experts can attenuate betrayal aversion and lead to higher overall rates of seeking expert advice. In other words, we ask: are decision makers averse to algorithmic betrayal? The answer to this question is uncertain ex ante. We answer this question through an experimental financial market where there is an identical risk of betrayal from either a human or algorithmic financial advisor. We find that the willingness to delegate to human experts is significantly reduced by betrayal aversion, while no betrayal aversion is exhibited toward algorithmic experts. The impact of betrayal aversion toward financial advisors is considerable: the resulting unwillingness to take the advice of the human expert leads to a 20% decrease in subsequent earnings, while no loss in earnings is observed in the algorithmic expert condition. This study has significant implications for firms, policymakers, and consumers, specifically in the financial services industry. This paper has been This paper was accepted by D. J. Wu for the Special Issue on the Human-Algorithm Connection. Funding: This work was supported by National Science Foundation [Grant 1541105]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.03510 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
sophia1211完成签到 ,获得积分10
4秒前
4秒前
猪猪hero发布了新的文献求助10
5秒前
Wfy完成签到,获得积分10
5秒前
寻梦完成签到,获得积分10
6秒前
科研通AI6应助西米采纳,获得10
9秒前
归尘发布了新的文献求助10
9秒前
眼睛大慕卉完成签到 ,获得积分10
9秒前
chrisio完成签到,获得积分10
10秒前
科研通AI6应助荣离枯采纳,获得10
14秒前
整齐泥猴桃完成签到 ,获得积分10
15秒前
16秒前
qing晴发布了新的文献求助10
16秒前
科研通AI2S应助西一阿铭采纳,获得10
17秒前
xiaoxiao发布了新的文献求助10
17秒前
20秒前
20秒前
23秒前
23秒前
ZTTTWHHH发布了新的文献求助10
24秒前
大勺完成签到 ,获得积分10
26秒前
zhou123432发布了新的文献求助10
26秒前
附子发布了新的文献求助10
27秒前
27秒前
27秒前
tayyy发布了新的文献求助10
28秒前
打打应助开朗的雪珊采纳,获得10
29秒前
发飙的蜗牛完成签到,获得积分10
31秒前
西一阿铭发布了新的文献求助10
32秒前
小马甲应助猪猪hero采纳,获得30
32秒前
32秒前
二甲亚砜完成签到 ,获得积分10
33秒前
33秒前
sukee完成签到,获得积分10
34秒前
syan发布了新的文献求助10
35秒前
36秒前
36秒前
小二完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431810
求助须知:如何正确求助?哪些是违规求助? 4544679
关于积分的说明 14193481
捐赠科研通 4463816
什么是DOI,文献DOI怎么找? 2446904
邀请新用户注册赠送积分活动 1438237
关于科研通互助平台的介绍 1414921