Metabolomics and network pharmacology-based identification of phenolic acids in Polygonatum kingianum var. grandifolium rhizomes as anti-cancer/Tumor active ingredients

小桶 根茎 计算生物学 代谢组学 对接(动物) 化学 生物化学 生物 药理学 生物信息学 植物 基因 医学 基因表达 转录组 护理部
作者
Xiaolin Wan,Lingjun Cui,Qian-Gang Xiao
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (12): e0315857-e0315857
标识
DOI:10.1371/journal.pone.0315857
摘要

Broadly targeted metabolomics techniques were used to identify phenolic acid compounds in Polygonatum kingianum var. grandifolium (PKVG) rhizomes and retrieve anti-cancer/tumor active substance bases from them. We identified potential drug targets by constructing Venn diagrams of compound and disease targets. Further, KEGG pathway analysis was performed to reveal the relevant pathways for anti-cancer/tumor activity of PKVG. Finally, we performed molecular docking to determine whether the identified proteins were targets of phenolic acid compounds from PKVG rhizome parts. The study’s results revealed 71 phenolic acid compounds in PKVG rhizomes. Among them, three active ingredients and 42 corresponding targets were closely related to the anticancer/tumor activities of PKVG rhizome site phenolic acids. We identified two essential compounds and eight important targets by constructing the compound-target pathway network. 2 essential compounds were androsin and chlorogenic acid; 8 key targets were MAPK1, EGFR, PRKCA, MAPK10, GSK3B, CASP3, CASP8, and MMP9. The analysis of the KEGG pathway identified 42 anti-cancer/tumor-related pathways. In order of degree, we performed molecular docking on two essential compounds and the top 4 targets, MAPK1, EGFR, PRKCA, and MAPK10, to further validate the network pharmacology screening results. The molecular docking results were consistent with the network pharmacology results. Therefore, we suggest that the phenolic acids in PKVG rhizomes may exert anti-cancer/tumor activity through a multi-component, multi-target, and multi-channel mechanism of action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助积极的凌波采纳,获得10
1秒前
1秒前
烟花应助欣慰硬币采纳,获得10
1秒前
老大爷滴滴完成签到,获得积分10
1秒前
1秒前
1秒前
SciGPT应助LEMON采纳,获得10
2秒前
搜集达人应助叶飞荷采纳,获得10
2秒前
wxy完成签到,获得积分10
2秒前
3秒前
弄香完成签到,获得积分10
3秒前
gguc完成签到,获得积分10
3秒前
3秒前
无聊又夏完成签到,获得积分10
4秒前
今后应助木野狐采纳,获得10
4秒前
5秒前
小木木壮发布了新的文献求助10
5秒前
5秒前
5秒前
欢喜从霜发布了新的文献求助10
5秒前
6秒前
Ll发布了新的文献求助10
6秒前
茶艺如何发布了新的文献求助10
7秒前
落后秋柳发布了新的文献求助10
7秒前
科研通AI5应助大方嵩采纳,获得10
7秒前
8秒前
8秒前
海鸥海鸥发布了新的文献求助10
8秒前
南敏株完成签到,获得积分10
9秒前
稳重完成签到 ,获得积分10
10秒前
10秒前
10秒前
mi发布了新的文献求助10
10秒前
11秒前
顺利毕业完成签到 ,获得积分10
11秒前
GGZ发布了新的文献求助10
12秒前
笑笑发布了新的文献求助10
12秒前
轻松致远完成签到 ,获得积分10
12秒前
12秒前
现实的曼荷给现实的曼荷的求助进行了留言
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762