亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Metabolomics and network pharmacology-based identification of phenolic acids in Polygonatum kingianum var. grandifolium rhizomes as anti-cancer/Tumor active ingredients

小桶 根茎 计算生物学 代谢组学 对接(动物) 化学 生物化学 生物 药理学 生物信息学 植物 基因 医学 基因表达 转录组 护理部
作者
Xiaolin Wan,Lingjun Cui,Qian-Gang Xiao
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (12): e0315857-e0315857
标识
DOI:10.1371/journal.pone.0315857
摘要

Broadly targeted metabolomics techniques were used to identify phenolic acid compounds in Polygonatum kingianum var. grandifolium (PKVG) rhizomes and retrieve anti-cancer/tumor active substance bases from them. We identified potential drug targets by constructing Venn diagrams of compound and disease targets. Further, KEGG pathway analysis was performed to reveal the relevant pathways for anti-cancer/tumor activity of PKVG. Finally, we performed molecular docking to determine whether the identified proteins were targets of phenolic acid compounds from PKVG rhizome parts. The study’s results revealed 71 phenolic acid compounds in PKVG rhizomes. Among them, three active ingredients and 42 corresponding targets were closely related to the anticancer/tumor activities of PKVG rhizome site phenolic acids. We identified two essential compounds and eight important targets by constructing the compound-target pathway network. 2 essential compounds were androsin and chlorogenic acid; 8 key targets were MAPK1, EGFR, PRKCA, MAPK10, GSK3B, CASP3, CASP8, and MMP9. The analysis of the KEGG pathway identified 42 anti-cancer/tumor-related pathways. In order of degree, we performed molecular docking on two essential compounds and the top 4 targets, MAPK1, EGFR, PRKCA, and MAPK10, to further validate the network pharmacology screening results. The molecular docking results were consistent with the network pharmacology results. Therefore, we suggest that the phenolic acids in PKVG rhizomes may exert anti-cancer/tumor activity through a multi-component, multi-target, and multi-channel mechanism of action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助某某某采纳,获得10
6秒前
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
吃不饱和学不会完成签到,获得积分10
26秒前
wangermazi完成签到,获得积分0
36秒前
Orange应助史念波采纳,获得10
55秒前
57秒前
某某某发布了新的文献求助10
1分钟前
1分钟前
史念波发布了新的文献求助10
1分钟前
1分钟前
Albert发布了新的文献求助10
1分钟前
慕青应助zjl123采纳,获得10
1分钟前
Albert完成签到,获得积分10
1分钟前
彭于晏应助史念波采纳,获得10
1分钟前
西安浴日光能赵炜完成签到,获得积分10
1分钟前
1分钟前
史念波发布了新的文献求助10
2分钟前
充电宝应助史念波采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
爆米花应助有只kangaroo采纳,获得10
2分钟前
英姑应助我是浩浩爹采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
史念波发布了新的文献求助10
2分钟前
2分钟前
2分钟前
史念波完成签到,获得积分10
3分钟前
zjl123发布了新的文献求助10
3分钟前
YSY完成签到,获得积分10
3分钟前
枫叶完成签到 ,获得积分10
3分钟前
沉默碧空完成签到,获得积分10
3分钟前
3分钟前
优秀的盼夏完成签到,获得积分10
4分钟前
脑洞疼应助Ni采纳,获得10
4分钟前
5分钟前
Ni发布了新的文献求助10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303242
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482477
捐赠科研通 2611463
什么是DOI,文献DOI怎么找? 1425919
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005