Unlocking the Full Redox Capability of Organic Charge‐Transfer Complex in High‐Loading Electrodes for Organic Rechargeable Batteries

材料科学 有机自由基电池 氧化还原 电极 电荷(物理) 纳米技术 化学工程 电化学 冶金 物理化学 化学 物理 量子力学 工程类
作者
Sechan Lee,Jihyeon Kim,Jihyun Hong,Kisuk Kang
出处
期刊:Advanced Energy Materials [Wiley]
标识
DOI:10.1002/aenm.202404116
摘要

Abstract Organic charge‐transfer complex (OCTC) comprising redox‐active donor and acceptor molecules is a promising electrode material group, potentially resolving issues of low power and inferior cycle stability of organic electrodes in rechargeable batteries. Strong intermolecular interactions in OCTC such as π–π interaction and hydrogen bonding enable high electronic conductivity and suppress solubility to solvents. However, full redox activities of OCTC have not been achieved yet despite the inherent redox capabilities of respective donor and acceptor molecules. Here, it is revealed that the limited redox activities of OCTC stem from electrolyte‐incorporated complex formation, which weakens the characteristic intermolecular interactions, thereby hindering the redox reaction, particularly in Li‐based electrolytes. It is further shown that tailoring electrolyte types, specifically using Zn‐aqueous electrolytes, can substantially mitigate the complex formation and unlock the four‐electron redox activity of OCTC (phenazine (PNZ)‐7,7,8,8‐tetracyanoquinodimethane (TCNQ), that is, PNZ–TCNQ), with superior cycle stability retaining 88% of maximum capacity over 100 cycles. Surprisingly, the full redox reaction achieves an unprecedentedly high electrode‐level energy density, delivering ≈10 mAh cm −2 of areal capacity (580 µm‐thick electrodes) in Zn‐aqueous batteries. The findings elucidate the complex interplay between organic electrodes and electrolytes in the charge storage mechanism, highlighting the importance of electrolyte design in developing organic electrode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助非要起名采纳,获得10
6秒前
10秒前
Tu完成签到 ,获得积分10
11秒前
屈绮兰发布了新的文献求助60
11秒前
15秒前
李爱国应助babied采纳,获得10
15秒前
ss25发布了新的文献求助10
16秒前
16秒前
ni发布了新的文献求助10
19秒前
21秒前
23秒前
wuwa完成签到,获得积分10
23秒前
ddy完成签到,获得积分10
23秒前
明理的盼山完成签到,获得积分10
23秒前
yy完成签到,获得积分10
25秒前
26秒前
27秒前
27秒前
27秒前
30秒前
30秒前
30秒前
31秒前
lius完成签到,获得积分10
32秒前
tangxk22发布了新的文献求助10
32秒前
hyg发布了新的文献求助10
32秒前
dfghjkl发布了新的文献求助30
32秒前
34秒前
34秒前
冯冯申博了么完成签到,获得积分20
34秒前
华仔应助踏实的三问采纳,获得10
34秒前
34秒前
34秒前
韩hqf发布了新的文献求助10
35秒前
megamind发布了新的文献求助10
35秒前
36秒前
36秒前
CipherSage应助Alice采纳,获得10
37秒前
科研通AI5应助yuanweisun采纳,获得30
38秒前
灵巧灵槐完成签到,获得积分10
39秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3708060
求助须知:如何正确求助?哪些是违规求助? 3256583
关于积分的说明 9901032
捐赠科研通 2969089
什么是DOI,文献DOI怎么找? 1628340
邀请新用户注册赠送积分活动 772115
科研通“疑难数据库(出版商)”最低求助积分说明 743639