Gearbox Fault Diagnosis Based on Multi-Sensor and Multi-Channel Decision-Level Fusion Based on SDP

稳健性(进化) 卷积神经网络 计算机科学 频道(广播) 传感器融合 人工智能 断层(地质) 模式识别(心理学) 保险丝(电气) 计算机视觉 算法 工程类 电信 生物化学 化学 地震学 电气工程 基因 地质学
作者
Yuan Fu,Xiang Chen,Yu Liu,Chan Son,Yan Yang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:12 (15): 7535-7535 被引量:13
标识
DOI:10.3390/app12157535
摘要

In order to deal with the shortcomings (such as poor robustness) of the traditional single-channel vibration signal in the comprehensive monitoring of the gearbox fault state, a multi-channel decision-level fusion algorithm was proposed based on symmetrized dot pattern (SDP) analysis, with the visual geometry group 16 network (VGG16) fault diagnosis model. Firstly, the SDP method was used to convert the vibration signal of a single multi-channel sensor into an imaging arm. Secondly, the obtained image arm was input into the VGG16 convolutional neural network in order to train the fault diagnosis model that can be obtained. Then, the SDP images of the signals that were to be measured from multiple multi-channel sensors were input into the fault diagnosis model, and the diagnosis results of multiple multi-channel sensors could then be obtained. Experimentally, it was demonstrated that the diagnostic results of multi-channel sensors one, two, and three were more accurate than those of single-channel sensors one, two, and three, by 3.01%, 16.7%, and 5.17%, respectively. However, the fault generation was not generated in a single direction, but rather multiple directions. In order to improve the comprehensiveness of the raw vibration data, a fusion method using DS (Dempster–Shafer) evidence theory was proposed in order to fuse multiple multi-channel sensors, in which the accuracy achieved 99.93% when sensor one and sensor two were fused, which was an improvement of 8.88% and 1.02% over single sensors one and two, respectively. When sensor one and sensor three were fused, the accuracy reached 99.31%, which was an improvement of 8.31% and 6.17% over single sensors one and three, respectively. When sensor two and sensor three were fused, the accuracy reached 99.91%, which was an improvement of 1.00% and 6.74% over single sensors two and three, respectively. When three sensors were fused simultaneously, the accuracy reached 99.99%, which was 8.93%, 1.08%, and 6.81% better than single sensors one, two, and three, respectively. Therefore, it can be proved that the number of sensor channels has a great influence on the diagnosis results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助yp采纳,获得10
1秒前
2秒前
3秒前
4秒前
追寻梦松完成签到,获得积分10
6秒前
小泓完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
谢亚飞发布了新的文献求助10
9秒前
9秒前
微笑亿先发布了新的文献求助10
10秒前
研友_菲发布了新的文献求助10
10秒前
11秒前
uss完成签到,获得积分10
12秒前
sakura发布了新的文献求助10
14秒前
整齐妙之发布了新的文献求助30
14秒前
13完成签到 ,获得积分10
15秒前
16秒前
未来可期发布了新的文献求助10
17秒前
ATTENTION完成签到,获得积分10
17秒前
yp发布了新的文献求助10
18秒前
谭杰完成签到,获得积分10
18秒前
李雯婷发布了新的文献求助10
19秒前
顾矜应助未来可期采纳,获得10
20秒前
21秒前
sunshine发布了新的文献求助10
21秒前
乔心发布了新的文献求助10
21秒前
优雅夜南发布了新的文献求助10
23秒前
科研通AI2S应助李天采纳,获得10
23秒前
科研通AI5应助汪汪采纳,获得10
23秒前
sakura完成签到,获得积分20
25秒前
yifei完成签到,获得积分10
26秒前
YJR发布了新的文献求助10
26秒前
未来可期完成签到,获得积分10
26秒前
昏睡的胖粘完成签到 ,获得积分10
30秒前
31秒前
研友_VZG7GZ应助是叶总啊采纳,获得10
31秒前
微笑亿先完成签到,获得积分10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737724
求助须知:如何正确求助?哪些是违规求助? 3281359
关于积分的说明 10024958
捐赠科研通 2998099
什么是DOI,文献DOI怎么找? 1645066
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749814