带隙
表面光电压
半导体
光致发光
材料科学
镧系元素
直接和间接带隙
吸收光谱法
光谱学
分析化学(期刊)
化学
光电子学
光学
物理
离子
有机化学
色谱法
量子力学
作者
Brian A. Wuille Bille,Anna Kundmann,Frank E. Osterloh,Jesús M. Velázquez
标识
DOI:10.1021/acs.chemmater.2c01244
摘要
Lanthanoid oxysulfides are promising materials for technological applications owing to their magnetic, photoluminescent, catalytic, and optoelectronic properties. Herein, we report the solid-state synthesis and structural characterization of Ln10S14O (Ln = La, Ce, Pr, Nd, Sm) oxysulfides. Then, we present a thorough discussion on their electronic and photophysical properties. Through Tauc plot analysis and the derivation of the absorption spectrum fitting method (DASF), we determine that all oxysulfides have direct band gaps with energies of 2.84 eV (La), 2.02 eV (Ce), 2.56 eV (Pr), 2.64 eV (Nd), and 2.41 eV (Sm). Furthermore, surface photovoltage spectroscopy (SPS) shows photovoltage (ΔCPD) values of −0.4 to −1.1 V for La-, Pr-, Nd-, and Sm-containing compounds when illuminated near the optical band gap, indicating that these oxysulfides are n-type semiconductors, which is consistent with Mott–Schottky analysis. Photovoltages under sub-band gap illumination energy and photovoltage decay data suggest mid-band gap states possibly arising from the lanthanoid 4f orbitals and/or defects within the crystal structure or at the particle surfaces. These photophysical properties suggest possible applications of the oxysulfides in photoelectrochemical and photovoltaic energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI