M-YOLO: an object detector based on global context information for infrared images

计算机科学 目标检测 人工智能 背景(考古学) 探测器 计算机视觉 特征(语言学) 红外线的 对象(语法) 模式识别(心理学) 地理 哲学 考古 物理 光学 电信 语言学
作者
Zhiqiang Hou,Jun Ma,Hao Guo,Juanjuan Li,Sugang Ma,Jiulun Fan
出处
期刊:Journal of Real-time Image Processing [Springer Science+Business Media]
卷期号:19 (6): 1009-1022
标识
DOI:10.1007/s11554-022-01242-y
摘要

Object detection is an important task in computer vision. While visible (VS) images are adequate for detecting objects in most scenarios, infrared (IR) images can extend the capabilities of object detection to night-time or occluded objects. For IR images, we proposes an infrared object detector based on global context information. Combined with the lightweight network (MobileNetV2) to extract features, therefore the detector is named M-YOLO. Then, dedicated to enhancing the global information perception capability of the model, this paper proposes a global contextual information aggregation model. To preserve multi-scale information and enhance expressiveness of features, a top-down and bottom-up parallel feature fusion method is proposed. Only two detection heads are used to implement a lightweight model, which improves detection accuracy and speed. We use the self-built IR dataset (GIR) and the public IR dataset (FLIR) to verify the superiority of the model. Compared with YOLOv4 (78.1%), the average accuracy of M-YOLO (83.4%) is improved by 5.3% on the FLIR dataset. The detection time (4.33 ms) is less, with a detection speed of 30.6 FPS. On the GIR dataset, the detection accuracy (76.1%) is 6.4% higher than that of YOLOv4 (69.7%), and the detection time (6.84 ms) is lower. Our method improves the performance of IR object detection. The method is able to detect IR ground targets in complex environments, and the detection speed meets the real-time requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助年轻的冬亦采纳,获得10
刚刚
XWER发布了新的文献求助10
1秒前
1秒前
爆米花应助hu采纳,获得30
1秒前
俏皮芷蕊发布了新的文献求助10
1秒前
研友_ngqjz8完成签到,获得积分10
1秒前
3秒前
小苏打发布了新的文献求助10
3秒前
北极星发布了新的文献求助10
3秒前
4秒前
lyz发布了新的文献求助10
4秒前
蒜头王八发布了新的文献求助10
4秒前
正直远望完成签到 ,获得积分10
5秒前
5秒前
小娄娄娄发布了新的文献求助10
6秒前
7秒前
付博雯发布了新的文献求助10
7秒前
高贵的乐天完成签到 ,获得积分10
7秒前
蓝风铃完成签到 ,获得积分10
8秒前
118完成签到,获得积分10
8秒前
阿振发布了新的文献求助10
8秒前
搜集达人应助lenny采纳,获得10
8秒前
bjyx完成签到,获得积分10
8秒前
布洛芬关注了科研通微信公众号
9秒前
温大林完成签到,获得积分10
9秒前
跋扈完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
科研小郭完成签到,获得积分10
11秒前
Fred发布了新的文献求助10
12秒前
沉尘完成签到 ,获得积分10
12秒前
sunny完成签到,获得积分10
13秒前
13秒前
13秒前
等风来发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288