M-YOLO: an object detector based on global context information for infrared images

计算机科学 目标检测 人工智能 背景(考古学) 探测器 计算机视觉 特征(语言学) 红外线的 对象(语法) 模式识别(心理学) 地理 哲学 考古 物理 光学 电信 语言学
作者
Zhiqiang Hou,Jun Ma,Hao Guo,Juanjuan Li,Sugang Ma,Jiulun Fan
出处
期刊:Journal of Real-time Image Processing [Springer Science+Business Media]
卷期号:19 (6): 1009-1022
标识
DOI:10.1007/s11554-022-01242-y
摘要

Object detection is an important task in computer vision. While visible (VS) images are adequate for detecting objects in most scenarios, infrared (IR) images can extend the capabilities of object detection to night-time or occluded objects. For IR images, we proposes an infrared object detector based on global context information. Combined with the lightweight network (MobileNetV2) to extract features, therefore the detector is named M-YOLO. Then, dedicated to enhancing the global information perception capability of the model, this paper proposes a global contextual information aggregation model. To preserve multi-scale information and enhance expressiveness of features, a top-down and bottom-up parallel feature fusion method is proposed. Only two detection heads are used to implement a lightweight model, which improves detection accuracy and speed. We use the self-built IR dataset (GIR) and the public IR dataset (FLIR) to verify the superiority of the model. Compared with YOLOv4 (78.1%), the average accuracy of M-YOLO (83.4%) is improved by 5.3% on the FLIR dataset. The detection time (4.33 ms) is less, with a detection speed of 30.6 FPS. On the GIR dataset, the detection accuracy (76.1%) is 6.4% higher than that of YOLOv4 (69.7%), and the detection time (6.84 ms) is lower. Our method improves the performance of IR object detection. The method is able to detect IR ground targets in complex environments, and the detection speed meets the real-time requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkkkkkkkkkkk发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
2秒前
3秒前
响什么捏完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
dududu完成签到,获得积分10
5秒前
5秒前
大椒完成签到 ,获得积分10
6秒前
6秒前
dididi发布了新的文献求助10
6秒前
Sacchride发布了新的文献求助10
7秒前
9秒前
10秒前
大个应助畅快芝麻采纳,获得10
10秒前
大模型应助nena采纳,获得10
10秒前
10秒前
11秒前
浮游应助简单的paper采纳,获得20
11秒前
我喜欢高浩洋完成签到,获得积分10
11秒前
cx完成签到,获得积分10
11秒前
共享精神应助dididi采纳,获得10
12秒前
11关闭了11文献求助
12秒前
12秒前
el完成签到 ,获得积分10
13秒前
14秒前
14秒前
AWESOME Ling发布了新的文献求助10
14秒前
别摆烂了发布了新的文献求助10
14秒前
小情绪应助科研通管家采纳,获得10
16秒前
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
Alex应助科研通管家采纳,获得30
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
小情绪应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950360
求助须知:如何正确求助?哪些是违规求助? 4213390
关于积分的说明 13103546
捐赠科研通 3995055
什么是DOI,文献DOI怎么找? 2186753
邀请新用户注册赠送积分活动 1202024
关于科研通互助平台的介绍 1115355