In2O3/g-C3N4/Au ternary heterojunction-integrated surface plasmonic and charge-separated effects for room-temperature ultrasensitive NO2 detection

异质结 三元运算 材料科学 纳米纤维 表面等离子共振 纳米颗粒 光电子学 载流子 纳米技术 磷烯 等离子体子 带隙 计算机科学 程序设计语言
作者
Chaohan Han,Xiaowei Li,Jie Liu,Haipeng Dong,Wanying Cheng,Yu Liu,Jiayu Xin,Xinghua Li,Changlu Shao,Yichun Liu
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:371: 132448-132448 被引量:32
标识
DOI:10.1016/j.snb.2022.132448
摘要

Light-activated gas sensors based on semiconducting metal oxides (SMOs) hold great promise for next-generation gas sensing application, due to their unique superiority including room-temperature operation, intrinsic safety, and simple device structure. However, poor visible-light absorption and fast carrier recombination of SMOs sensing film are two main barriers that seriously restrict their sensing performance of light-activated gas sensors. Herein, a visible-light activated gas sensor based on Au nanoparticles modified In2O3/g-C3N4 heterojunction nanofibers is developed. Excellent sensing response (Rg/Ra = 17.2 to 1 ppm NO2, where Ra and Rg represent the resistance of sensors when exposed to air or target gas) and fast response/recovery kinetics at room temperature are obtained, which is markedly better than the sensors based on pristine In2O3 nanofibers and In2O3/g-C3N4 nanofibers. Through the discussion and estimation of experimental results, the improved gas sensing properties of In2O3/g-C3N4/Au-based sensors are speculated to be related to the enhanced visible light utilization benefiting from localized surface plasmon resonance (LSPR) effect of Au nanoparticles, and the efficient separation of photo-generated carriers enabled by heterojunctions between In2O3, Au, and g-C3N4 components. The current work will provide a universal strategy to develop high-performance light-activated gas sensor and a deep understanding about the sensing principle of this novel type of gas sensor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li完成签到,获得积分10
1秒前
2秒前
1234学术发布了新的文献求助10
3秒前
8秒前
11秒前
12秒前
13秒前
zhanglinfeng完成签到,获得积分10
16秒前
活力千雁发布了新的文献求助30
17秒前
18秒前
大模型应助书记采纳,获得10
18秒前
小马甲应助酷酷的时光采纳,获得10
18秒前
19秒前
Zn中毒完成签到,获得积分10
19秒前
燕子完成签到,获得积分20
20秒前
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
21秒前
wanci应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
领导范儿应助brightface123采纳,获得10
21秒前
一碗米线发布了新的文献求助10
24秒前
25秒前
27秒前
共享精神应助羊洋洋采纳,获得10
30秒前
30秒前
31秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5383727
求助须知:如何正确求助?哪些是违规求助? 4506742
关于积分的说明 14025422
捐赠科研通 4416400
什么是DOI,文献DOI怎么找? 2426006
邀请新用户注册赠送积分活动 1418734
关于科研通互助平台的介绍 1396986