In2O3/g-C3N4/Au ternary heterojunction-integrated surface plasmonic and charge-separated effects for room-temperature ultrasensitive NO2 detection

异质结 三元运算 材料科学 纳米纤维 表面等离子共振 纳米颗粒 光电子学 载流子 纳米技术 磷烯 等离子体子 带隙 计算机科学 程序设计语言
作者
Chaohan Han,Xiaowei Li,Jie Liu,Haipeng Dong,Wanying Cheng,Yu Liu,Jiayu Xin,Xinghua Li,Changlu Shao,Yichun Liu
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:371: 132448-132448 被引量:32
标识
DOI:10.1016/j.snb.2022.132448
摘要

Light-activated gas sensors based on semiconducting metal oxides (SMOs) hold great promise for next-generation gas sensing application, due to their unique superiority including room-temperature operation, intrinsic safety, and simple device structure. However, poor visible-light absorption and fast carrier recombination of SMOs sensing film are two main barriers that seriously restrict their sensing performance of light-activated gas sensors. Herein, a visible-light activated gas sensor based on Au nanoparticles modified In2O3/g-C3N4 heterojunction nanofibers is developed. Excellent sensing response (Rg/Ra = 17.2 to 1 ppm NO2, where Ra and Rg represent the resistance of sensors when exposed to air or target gas) and fast response/recovery kinetics at room temperature are obtained, which is markedly better than the sensors based on pristine In2O3 nanofibers and In2O3/g-C3N4 nanofibers. Through the discussion and estimation of experimental results, the improved gas sensing properties of In2O3/g-C3N4/Au-based sensors are speculated to be related to the enhanced visible light utilization benefiting from localized surface plasmon resonance (LSPR) effect of Au nanoparticles, and the efficient separation of photo-generated carriers enabled by heterojunctions between In2O3, Au, and g-C3N4 components. The current work will provide a universal strategy to develop high-performance light-activated gas sensor and a deep understanding about the sensing principle of this novel type of gas sensor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
2秒前
三两三完成签到,获得积分10
2秒前
香蕉觅云应助沉舟采纳,获得10
2秒前
Snoopy_Swan完成签到,获得积分10
4秒前
slow完成签到,获得积分10
4秒前
ColdPomelo完成签到,获得积分10
4秒前
5秒前
6秒前
烂漫的飞松完成签到,获得积分10
7秒前
认真火车完成签到,获得积分10
7秒前
开朗千山完成签到,获得积分10
7秒前
务实的奇迹完成签到,获得积分10
7秒前
7秒前
科研通AI6应助崔雨旋采纳,获得10
8秒前
8秒前
cm完成签到,获得积分10
8秒前
大模型应助Danke采纳,获得10
9秒前
Dreamy发布了新的文献求助10
9秒前
今后应助乍见之欢采纳,获得10
9秒前
9秒前
10秒前
10秒前
HCKACECE发布了新的文献求助10
10秒前
拼搏书琴发布了新的文献求助10
11秒前
11秒前
DDD发布了新的文献求助10
12秒前
滔滔完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
文艺月亮完成签到,获得积分10
12秒前
薯条完成签到 ,获得积分10
12秒前
13秒前
wangchong发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5237952
求助须知:如何正确求助?哪些是违规求助? 4405573
关于积分的说明 13711175
捐赠科研通 4273871
什么是DOI,文献DOI怎么找? 2345256
邀请新用户注册赠送积分活动 1342382
关于科研通互助平台的介绍 1300263