A novel unsupervised directed hierarchical graph network with clustering representation for intelligent fault diagnosis of machines

计算机科学 聚类分析 人工智能 数据挖掘 模式识别(心理学) 自编码 图形 卷积神经网络 无监督学习 人工神经网络 机器学习 理论计算机科学
作者
Bo Zhao,Xianmin Zhang,Qiqiang Wu,Zhuobo Yang,Zhenhui Zhan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:183: 109615-109615 被引量:30
标识
DOI:10.1016/j.ymssp.2022.109615
摘要

Intelligent fault diagnosis technology, as a promising approach, is gradually playing an irreplaceable role in ensuring the safety, reliability, and efficiency of mechanical equipment. However, in real-world industrial scenarios, obtaining adequate high-quality label information is typically challenging and unrealistic, resulting in the performance degradation of most existing supervised learning-based diagnosis models, and necessitating the development of unsupervised intelligent diagnostic models. In addition, the sample independence hypothesis is widely used in existing studies, which significantly ignores the further mining of relevant auxiliary information between samples and its positive effect on performance improvement. To overcome these challenges, a novel intelligent fault diagnosis framework, called the convolutional capsule auto-encoder-based unsupervised directed hierarchical graph network with clustering representation (CCAE-UDHGN-CR), is established and employed in unlabeled scenarios. First, a novel convolutional capsule auto-encoder (CCAE), which combines reconstruction loss and semantic clustering loss, is constructed and used to extract deep coding features that contain attribute information of the sample itself. Then, with the assistance of cosine similarity measurement strategy, the internal correlation between samples is fully mined, and on this basis, the conversion of deep coding features to the graph sample set is realized, which serves as the input of the subsequent unsupervised directed hierarchical graph network (UDHGN). Finally, the deep representation features extracted by the UDHGN are further fed into the density-based spatial clustering of applications with noise (DBSCAN) model to complete the determination of category information. A total of three cases based on key functional components and manipulator are employed for performance verification. The comprehensive diagnosis results all show that the proposed CCAE-UDHGN-CR model can effectively alleviate the dependence on label information while maintaining excellent diagnosis performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助鸡块面采纳,获得10
刚刚
2秒前
2秒前
Allure完成签到 ,获得积分20
4秒前
小破网完成签到 ,获得积分0
5秒前
zhouleiwang完成签到,获得积分10
5秒前
5秒前
slin_sjtu完成签到,获得积分10
7秒前
典雅的荣轩完成签到,获得积分10
8秒前
9秒前
木木三发布了新的文献求助10
11秒前
地表飞猪应助ranj采纳,获得10
12秒前
青未完成签到,获得积分10
12秒前
nicheng发布了新的文献求助10
13秒前
zhengly23发布了新的文献求助20
14秒前
虚心半兰发布了新的文献求助10
14秒前
15秒前
大方的羊青完成签到,获得积分10
17秒前
沧海云完成签到 ,获得积分10
18秒前
zxcvbnm发布了新的文献求助50
19秒前
上官若男应助大方的羊青采纳,获得10
20秒前
hahahaweiwei发布了新的文献求助10
20秒前
John完成签到,获得积分10
21秒前
21秒前
魏猛完成签到,获得积分10
22秒前
活泼蜡烛完成签到,获得积分10
22秒前
含糊的无声完成签到 ,获得积分10
23秒前
鸡蛋完成签到 ,获得积分20
24秒前
叮当发布了新的文献求助30
26秒前
yyy完成签到,获得积分10
26秒前
大个应助hahahaweiwei采纳,获得10
27秒前
诸嵩发布了新的文献求助10
27秒前
科目三应助GinFF采纳,获得10
28秒前
Dr_Shi完成签到,获得积分10
29秒前
zxcvbnm完成签到,获得积分10
30秒前
Superman完成签到 ,获得积分10
31秒前
nicheng完成签到,获得积分10
31秒前
zzw完成签到,获得积分10
32秒前
sunflowers完成签到 ,获得积分10
35秒前
You完成签到,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268