A novel unsupervised directed hierarchical graph network with clustering representation for intelligent fault diagnosis of machines

计算机科学 聚类分析 人工智能 数据挖掘 模式识别(心理学) 自编码 图形 卷积神经网络 无监督学习 人工神经网络 机器学习 理论计算机科学
作者
Bo Zhao,Xianmin Zhang,Qiqiang Wu,Zhuobo Yang,Zhenhui Zhan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:183: 109615-109615 被引量:30
标识
DOI:10.1016/j.ymssp.2022.109615
摘要

Intelligent fault diagnosis technology, as a promising approach, is gradually playing an irreplaceable role in ensuring the safety, reliability, and efficiency of mechanical equipment. However, in real-world industrial scenarios, obtaining adequate high-quality label information is typically challenging and unrealistic, resulting in the performance degradation of most existing supervised learning-based diagnosis models, and necessitating the development of unsupervised intelligent diagnostic models. In addition, the sample independence hypothesis is widely used in existing studies, which significantly ignores the further mining of relevant auxiliary information between samples and its positive effect on performance improvement. To overcome these challenges, a novel intelligent fault diagnosis framework, called the convolutional capsule auto-encoder-based unsupervised directed hierarchical graph network with clustering representation (CCAE-UDHGN-CR), is established and employed in unlabeled scenarios. First, a novel convolutional capsule auto-encoder (CCAE), which combines reconstruction loss and semantic clustering loss, is constructed and used to extract deep coding features that contain attribute information of the sample itself. Then, with the assistance of cosine similarity measurement strategy, the internal correlation between samples is fully mined, and on this basis, the conversion of deep coding features to the graph sample set is realized, which serves as the input of the subsequent unsupervised directed hierarchical graph network (UDHGN). Finally, the deep representation features extracted by the UDHGN are further fed into the density-based spatial clustering of applications with noise (DBSCAN) model to complete the determination of category information. A total of three cases based on key functional components and manipulator are employed for performance verification. The comprehensive diagnosis results all show that the proposed CCAE-UDHGN-CR model can effectively alleviate the dependence on label information while maintaining excellent diagnosis performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳花完成签到,获得积分10
刚刚
SciGPT应助让地球种满香菜采纳,获得10
刚刚
ipomoea97完成签到,获得积分10
1秒前
ywffb完成签到,获得积分10
1秒前
sam完成签到,获得积分10
2秒前
2秒前
momo完成签到,获得积分10
2秒前
我爱科研完成签到,获得积分10
2秒前
3秒前
晚星发布了新的文献求助10
3秒前
njufeng完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
liuz53发布了新的文献求助10
4秒前
健壮的弼完成签到,获得积分10
4秒前
怡然缘分发布了新的文献求助10
6秒前
科研通AI6.1应助ywffb采纳,获得10
6秒前
謓言完成签到,获得积分10
6秒前
奋斗蝴蝶完成签到,获得积分10
6秒前
johnrambo0625完成签到,获得积分10
7秒前
7秒前
8秒前
11发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
11秒前
yuer完成签到,获得积分20
11秒前
墨川发布了新的文献求助10
11秒前
ipomoea97发布了新的文献求助10
12秒前
abcd完成签到,获得积分10
12秒前
科研通AI6.1应助沉静幻柏采纳,获得10
13秒前
852应助可耐的三德采纳,获得10
13秒前
Infinity完成签到,获得积分10
13秒前
13秒前
李里哩发布了新的文献求助10
14秒前
14秒前
yuer发布了新的文献求助10
14秒前
所所应助361采纳,获得10
15秒前
CaiBangrong完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761761
求助须知:如何正确求助?哪些是违规求助? 5531887
关于积分的说明 15400675
捐赠科研通 4897994
什么是DOI,文献DOI怎么找? 2634640
邀请新用户注册赠送积分活动 1582800
关于科研通互助平台的介绍 1538049