A novel unsupervised directed hierarchical graph network with clustering representation for intelligent fault diagnosis of machines

计算机科学 聚类分析 人工智能 数据挖掘 模式识别(心理学) 自编码 图形 卷积神经网络 无监督学习 人工神经网络 机器学习 理论计算机科学
作者
Bo Zhao,Xianmin Zhang,Qiqiang Wu,Zhuobo Yang,Zhenhui Zhan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:183: 109615-109615 被引量:30
标识
DOI:10.1016/j.ymssp.2022.109615
摘要

Intelligent fault diagnosis technology, as a promising approach, is gradually playing an irreplaceable role in ensuring the safety, reliability, and efficiency of mechanical equipment. However, in real-world industrial scenarios, obtaining adequate high-quality label information is typically challenging and unrealistic, resulting in the performance degradation of most existing supervised learning-based diagnosis models, and necessitating the development of unsupervised intelligent diagnostic models. In addition, the sample independence hypothesis is widely used in existing studies, which significantly ignores the further mining of relevant auxiliary information between samples and its positive effect on performance improvement. To overcome these challenges, a novel intelligent fault diagnosis framework, called the convolutional capsule auto-encoder-based unsupervised directed hierarchical graph network with clustering representation (CCAE-UDHGN-CR), is established and employed in unlabeled scenarios. First, a novel convolutional capsule auto-encoder (CCAE), which combines reconstruction loss and semantic clustering loss, is constructed and used to extract deep coding features that contain attribute information of the sample itself. Then, with the assistance of cosine similarity measurement strategy, the internal correlation between samples is fully mined, and on this basis, the conversion of deep coding features to the graph sample set is realized, which serves as the input of the subsequent unsupervised directed hierarchical graph network (UDHGN). Finally, the deep representation features extracted by the UDHGN are further fed into the density-based spatial clustering of applications with noise (DBSCAN) model to complete the determination of category information. A total of three cases based on key functional components and manipulator are employed for performance verification. The comprehensive diagnosis results all show that the proposed CCAE-UDHGN-CR model can effectively alleviate the dependence on label information while maintaining excellent diagnosis performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xjtu完成签到,获得积分10
刚刚
彭于晏应助spinon采纳,获得10
1秒前
2秒前
KSung完成签到 ,获得积分10
2秒前
大模型应助余周2024采纳,获得10
2秒前
Twonej应助Andy采纳,获得30
3秒前
可莉完成签到 ,获得积分10
4秒前
4秒前
wsdshuai比发布了新的文献求助10
5秒前
魏猛完成签到,获得积分10
5秒前
6秒前
桐桐应助wei采纳,获得10
6秒前
仁爱嫣发布了新的文献求助20
6秒前
力劈华山完成签到,获得积分10
7秒前
JamesPei应助平淡大船采纳,获得10
8秒前
8秒前
8秒前
li给li的求助进行了留言
9秒前
靓丽衫完成签到 ,获得积分10
9秒前
hhh完成签到,获得积分20
10秒前
科研小白完成签到 ,获得积分10
10秒前
ai幸完成签到,获得积分10
10秒前
科研通AI6.1应助积极纲采纳,获得10
10秒前
CodeCraft应助E10100采纳,获得10
10秒前
爆米花应助Long采纳,获得10
11秒前
132完成签到,获得积分10
11秒前
12秒前
shanshanerchuan完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
Danmo完成签到,获得积分10
14秒前
快乐滑板应助miemie66采纳,获得10
14秒前
斯文败类应助Aurinse采纳,获得10
14秒前
今后应助nini采纳,获得10
15秒前
15秒前
uu完成签到,获得积分20
15秒前
gugugu发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761101
求助须知:如何正确求助?哪些是违规求助? 5527734
关于积分的说明 15398943
捐赠科研通 4897671
什么是DOI,文献DOI怎么找? 2634354
邀请新用户注册赠送积分活动 1582460
关于科研通互助平台的介绍 1537768