A novel unsupervised directed hierarchical graph network with clustering representation for intelligent fault diagnosis of machines

计算机科学 聚类分析 人工智能 数据挖掘 模式识别(心理学) 自编码 图形 卷积神经网络 无监督学习 人工神经网络 机器学习 理论计算机科学
作者
Bo Zhao,Xianmin Zhang,Qiqiang Wu,Zhuobo Yang,Zhenhui Zhan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:183: 109615-109615 被引量:30
标识
DOI:10.1016/j.ymssp.2022.109615
摘要

Intelligent fault diagnosis technology, as a promising approach, is gradually playing an irreplaceable role in ensuring the safety, reliability, and efficiency of mechanical equipment. However, in real-world industrial scenarios, obtaining adequate high-quality label information is typically challenging and unrealistic, resulting in the performance degradation of most existing supervised learning-based diagnosis models, and necessitating the development of unsupervised intelligent diagnostic models. In addition, the sample independence hypothesis is widely used in existing studies, which significantly ignores the further mining of relevant auxiliary information between samples and its positive effect on performance improvement. To overcome these challenges, a novel intelligent fault diagnosis framework, called the convolutional capsule auto-encoder-based unsupervised directed hierarchical graph network with clustering representation (CCAE-UDHGN-CR), is established and employed in unlabeled scenarios. First, a novel convolutional capsule auto-encoder (CCAE), which combines reconstruction loss and semantic clustering loss, is constructed and used to extract deep coding features that contain attribute information of the sample itself. Then, with the assistance of cosine similarity measurement strategy, the internal correlation between samples is fully mined, and on this basis, the conversion of deep coding features to the graph sample set is realized, which serves as the input of the subsequent unsupervised directed hierarchical graph network (UDHGN). Finally, the deep representation features extracted by the UDHGN are further fed into the density-based spatial clustering of applications with noise (DBSCAN) model to complete the determination of category information. A total of three cases based on key functional components and manipulator are employed for performance verification. The comprehensive diagnosis results all show that the proposed CCAE-UDHGN-CR model can effectively alleviate the dependence on label information while maintaining excellent diagnosis performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nature榜上关注了科研通微信公众号
1秒前
元谷雪发布了新的文献求助10
1秒前
无恙发布了新的文献求助10
1秒前
2秒前
昔颜完成签到,获得积分10
2秒前
2秒前
田様应助Mt采纳,获得10
4秒前
LUO完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
问夏发布了新的文献求助10
7秒前
Zyw完成签到 ,获得积分10
7秒前
8秒前
乌贼完成签到 ,获得积分10
8秒前
陆驳发布了新的文献求助10
8秒前
暖风sunny完成签到,获得积分10
9秒前
高兴的百褶裙完成签到,获得积分10
9秒前
SciGPT应助无wu采纳,获得10
10秒前
萧萧完成签到,获得积分0
10秒前
11秒前
11秒前
12秒前
深情安青应助机智跳跳糖采纳,获得10
12秒前
LCC发布了新的文献求助10
12秒前
hhllhh发布了新的文献求助10
13秒前
13秒前
13秒前
Zyw关注了科研通微信公众号
14秒前
15秒前
微光熠发布了新的文献求助10
15秒前
称心的水蓉完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
nature榜上发布了新的文献求助10
15秒前
Owen应助人类不宜搞科研采纳,获得10
15秒前
ww完成签到,获得积分10
15秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277