A novel unsupervised directed hierarchical graph network with clustering representation for intelligent fault diagnosis of machines

计算机科学 聚类分析 人工智能 数据挖掘 模式识别(心理学) 自编码 图形 卷积神经网络 无监督学习 人工神经网络 机器学习 理论计算机科学
作者
Bo Zhao,Xianmin Zhang,Qiqiang Wu,Zhuobo Yang,Zhenhui Zhan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:183: 109615-109615 被引量:30
标识
DOI:10.1016/j.ymssp.2022.109615
摘要

Intelligent fault diagnosis technology, as a promising approach, is gradually playing an irreplaceable role in ensuring the safety, reliability, and efficiency of mechanical equipment. However, in real-world industrial scenarios, obtaining adequate high-quality label information is typically challenging and unrealistic, resulting in the performance degradation of most existing supervised learning-based diagnosis models, and necessitating the development of unsupervised intelligent diagnostic models. In addition, the sample independence hypothesis is widely used in existing studies, which significantly ignores the further mining of relevant auxiliary information between samples and its positive effect on performance improvement. To overcome these challenges, a novel intelligent fault diagnosis framework, called the convolutional capsule auto-encoder-based unsupervised directed hierarchical graph network with clustering representation (CCAE-UDHGN-CR), is established and employed in unlabeled scenarios. First, a novel convolutional capsule auto-encoder (CCAE), which combines reconstruction loss and semantic clustering loss, is constructed and used to extract deep coding features that contain attribute information of the sample itself. Then, with the assistance of cosine similarity measurement strategy, the internal correlation between samples is fully mined, and on this basis, the conversion of deep coding features to the graph sample set is realized, which serves as the input of the subsequent unsupervised directed hierarchical graph network (UDHGN). Finally, the deep representation features extracted by the UDHGN are further fed into the density-based spatial clustering of applications with noise (DBSCAN) model to complete the determination of category information. A total of three cases based on key functional components and manipulator are employed for performance verification. The comprehensive diagnosis results all show that the proposed CCAE-UDHGN-CR model can effectively alleviate the dependence on label information while maintaining excellent diagnosis performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助红红酱采纳,获得30
刚刚
罗浩发布了新的文献求助10
刚刚
刚刚
AA1完成签到,获得积分10
2秒前
蜗牛发布了新的文献求助30
2秒前
mouxq发布了新的文献求助10
4秒前
5秒前
nessa完成签到 ,获得积分10
6秒前
CGN发布了新的文献求助10
7秒前
浮游应助Jay采纳,获得10
7秒前
panqi77完成签到,获得积分20
8秒前
和谐听白发布了新的文献求助10
9秒前
lv完成签到,获得积分10
11秒前
华仔应助Raunio采纳,获得10
14秒前
乐乐应助背后一江采纳,获得10
16秒前
野原完成签到,获得积分20
17秒前
李健应助橘子夏采纳,获得10
18秒前
20秒前
研友_VZG7GZ应助高高乌冬面采纳,获得10
21秒前
领导范儿应助野原采纳,获得10
23秒前
吾日三省吾身完成签到,获得积分10
24秒前
kk发布了新的文献求助10
25秒前
29秒前
niu完成签到,获得积分10
31秒前
33秒前
33秒前
大龙哥886应助旺旺采纳,获得10
34秒前
36秒前
123lx完成签到,获得积分10
38秒前
mouxq发布了新的文献求助10
38秒前
yyx238666发布了新的文献求助10
40秒前
你猜猜看发布了新的文献求助10
40秒前
Szw666完成签到,获得积分10
40秒前
41秒前
兰高锋完成签到,获得积分10
42秒前
过往匆匆发布了新的文献求助10
43秒前
50秒前
糊涂涂完成签到,获得积分20
50秒前
51秒前
大模型应助kk采纳,获得10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566814
求助须知:如何正确求助?哪些是违规求助? 4651492
关于积分的说明 14696596
捐赠科研通 4593548
什么是DOI,文献DOI怎么找? 2520215
邀请新用户注册赠送积分活动 1492434
关于科研通互助平台的介绍 1463528