已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel unsupervised directed hierarchical graph network with clustering representation for intelligent fault diagnosis of machines

计算机科学 聚类分析 人工智能 数据挖掘 模式识别(心理学) 自编码 图形 卷积神经网络 无监督学习 人工神经网络 机器学习 理论计算机科学
作者
Bo Zhao,Xianmin Zhang,Qiqiang Wu,Zhuobo Yang,Zhenhui Zhan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:183: 109615-109615 被引量:30
标识
DOI:10.1016/j.ymssp.2022.109615
摘要

Intelligent fault diagnosis technology, as a promising approach, is gradually playing an irreplaceable role in ensuring the safety, reliability, and efficiency of mechanical equipment. However, in real-world industrial scenarios, obtaining adequate high-quality label information is typically challenging and unrealistic, resulting in the performance degradation of most existing supervised learning-based diagnosis models, and necessitating the development of unsupervised intelligent diagnostic models. In addition, the sample independence hypothesis is widely used in existing studies, which significantly ignores the further mining of relevant auxiliary information between samples and its positive effect on performance improvement. To overcome these challenges, a novel intelligent fault diagnosis framework, called the convolutional capsule auto-encoder-based unsupervised directed hierarchical graph network with clustering representation (CCAE-UDHGN-CR), is established and employed in unlabeled scenarios. First, a novel convolutional capsule auto-encoder (CCAE), which combines reconstruction loss and semantic clustering loss, is constructed and used to extract deep coding features that contain attribute information of the sample itself. Then, with the assistance of cosine similarity measurement strategy, the internal correlation between samples is fully mined, and on this basis, the conversion of deep coding features to the graph sample set is realized, which serves as the input of the subsequent unsupervised directed hierarchical graph network (UDHGN). Finally, the deep representation features extracted by the UDHGN are further fed into the density-based spatial clustering of applications with noise (DBSCAN) model to complete the determination of category information. A total of three cases based on key functional components and manipulator are employed for performance verification. The comprehensive diagnosis results all show that the proposed CCAE-UDHGN-CR model can effectively alleviate the dependence on label information while maintaining excellent diagnosis performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助勤恳的妙旋采纳,获得30
刚刚
mm完成签到 ,获得积分10
刚刚
Hum6le完成签到,获得积分10
刚刚
脑洞疼应助小明采纳,获得10
3秒前
脑洞疼应助abcd采纳,获得10
4秒前
云笙关注了科研通微信公众号
4秒前
希望天下0贩的0应助zyyyyyy采纳,获得10
4秒前
堇瓜发布了新的文献求助10
5秒前
彭于晏应助体贴茗采纳,获得10
5秒前
shawn完成签到 ,获得积分10
7秒前
CipherSage应助无情的宛儿采纳,获得10
8秒前
8秒前
舒服的水壶完成签到,获得积分10
9秒前
明理薯片完成签到,获得积分10
9秒前
9秒前
专注的芷完成签到 ,获得积分10
10秒前
隐形曼青应助温良恭俭让采纳,获得10
10秒前
FashionBoy应助积极的老鼠采纳,获得10
11秒前
干净巧荷发布了新的文献求助10
11秒前
12秒前
Ava应助oaix采纳,获得10
12秒前
汉堡包应助wenduoxu采纳,获得10
12秒前
zz完成签到,获得积分10
12秒前
12秒前
sobergod完成签到 ,获得积分10
13秒前
走心君完成签到,获得积分10
14秒前
风中的天蓝完成签到 ,获得积分10
15秒前
zz发布了新的文献求助10
15秒前
lili发布了新的文献求助10
16秒前
zyyyyyy发布了新的文献求助10
16秒前
沥青拌蛋黄完成签到,获得积分10
17秒前
18秒前
18秒前
可不完成签到,获得积分10
19秒前
20秒前
烟花应助lili采纳,获得10
20秒前
21秒前
21秒前
21秒前
Papillon_0091完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879