清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel unsupervised directed hierarchical graph network with clustering representation for intelligent fault diagnosis of machines

计算机科学 聚类分析 人工智能 数据挖掘 模式识别(心理学) 自编码 图形 卷积神经网络 无监督学习 人工神经网络 机器学习 理论计算机科学
作者
Bo Zhao,Xianmin Zhang,Qiqiang Wu,Zhuobo Yang,Zhenhui Zhan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:183: 109615-109615 被引量:30
标识
DOI:10.1016/j.ymssp.2022.109615
摘要

Intelligent fault diagnosis technology, as a promising approach, is gradually playing an irreplaceable role in ensuring the safety, reliability, and efficiency of mechanical equipment. However, in real-world industrial scenarios, obtaining adequate high-quality label information is typically challenging and unrealistic, resulting in the performance degradation of most existing supervised learning-based diagnosis models, and necessitating the development of unsupervised intelligent diagnostic models. In addition, the sample independence hypothesis is widely used in existing studies, which significantly ignores the further mining of relevant auxiliary information between samples and its positive effect on performance improvement. To overcome these challenges, a novel intelligent fault diagnosis framework, called the convolutional capsule auto-encoder-based unsupervised directed hierarchical graph network with clustering representation (CCAE-UDHGN-CR), is established and employed in unlabeled scenarios. First, a novel convolutional capsule auto-encoder (CCAE), which combines reconstruction loss and semantic clustering loss, is constructed and used to extract deep coding features that contain attribute information of the sample itself. Then, with the assistance of cosine similarity measurement strategy, the internal correlation between samples is fully mined, and on this basis, the conversion of deep coding features to the graph sample set is realized, which serves as the input of the subsequent unsupervised directed hierarchical graph network (UDHGN). Finally, the deep representation features extracted by the UDHGN are further fed into the density-based spatial clustering of applications with noise (DBSCAN) model to complete the determination of category information. A total of three cases based on key functional components and manipulator are employed for performance verification. The comprehensive diagnosis results all show that the proposed CCAE-UDHGN-CR model can effectively alleviate the dependence on label information while maintaining excellent diagnosis performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
枯叶蝶完成签到 ,获得积分10
9秒前
上官若男应助洋洋采纳,获得10
12秒前
Judy完成签到 ,获得积分0
13秒前
鱼儿游完成签到 ,获得积分10
14秒前
迷你的夜天完成签到 ,获得积分10
15秒前
感性的俊驰完成签到 ,获得积分10
20秒前
wr781586完成签到 ,获得积分10
20秒前
eyu完成签到,获得积分10
22秒前
airtermis完成签到 ,获得积分10
25秒前
eeeeeeenzyme完成签到 ,获得积分10
29秒前
31秒前
缥缈的闭月完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
xiaosui完成签到 ,获得积分10
33秒前
mumu发布了新的文献求助10
35秒前
洋洋完成签到,获得积分10
43秒前
166完成签到 ,获得积分10
47秒前
tianshanfeihe完成签到 ,获得积分10
52秒前
hcsdgf完成签到 ,获得积分10
58秒前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
烟花应助风中的棒棒糖采纳,获得10
1分钟前
光亮白羊完成签到 ,获得积分10
1分钟前
chenmeimei2012完成签到 ,获得积分10
1分钟前
YZ完成签到 ,获得积分10
1分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
1分钟前
knight7m完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
yunt完成签到 ,获得积分10
1分钟前
slayers完成签到 ,获得积分10
1分钟前
小洪俊熙完成签到,获得积分10
1分钟前
HY完成签到 ,获得积分10
1分钟前
1分钟前
PrayOne完成签到 ,获得积分10
1分钟前
2分钟前
风吹而过完成签到 ,获得积分10
2分钟前
YY完成签到 ,获得积分10
2分钟前
Hudson完成签到,获得积分10
2分钟前
蛋卷完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612892
求助须知:如何正确求助?哪些是违规求助? 4017940
关于积分的说明 12436878
捐赠科研通 3700243
什么是DOI,文献DOI怎么找? 2040634
邀请新用户注册赠送积分活动 1073400
科研通“疑难数据库(出版商)”最低求助积分说明 957029