A novel unsupervised directed hierarchical graph network with clustering representation for intelligent fault diagnosis of machines

计算机科学 聚类分析 人工智能 数据挖掘 模式识别(心理学) 自编码 图形 卷积神经网络 无监督学习 人工神经网络 机器学习 理论计算机科学
作者
Zhao Bo,Xianmin Zhang,Qikai Wu,Zhuobo Yang,Zhenhui Zhan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:183: 109615-109615 被引量:5
标识
DOI:10.1016/j.ymssp.2022.109615
摘要

Intelligent fault diagnosis technology, as a promising approach, is gradually playing an irreplaceable role in ensuring the safety, reliability, and efficiency of mechanical equipment. However, in real-world industrial scenarios, obtaining adequate high-quality label information is typically challenging and unrealistic, resulting in the performance degradation of most existing supervised learning-based diagnosis models, and necessitating the development of unsupervised intelligent diagnostic models. In addition, the sample independence hypothesis is widely used in existing studies, which significantly ignores the further mining of relevant auxiliary information between samples and its positive effect on performance improvement. To overcome these challenges, a novel intelligent fault diagnosis framework, called the convolutional capsule auto-encoder-based unsupervised directed hierarchical graph network with clustering representation (CCAE-UDHGN-CR), is established and employed in unlabeled scenarios. First, a novel convolutional capsule auto-encoder (CCAE), which combines reconstruction loss and semantic clustering loss, is constructed and used to extract deep coding features that contain attribute information of the sample itself. Then, with the assistance of cosine similarity measurement strategy, the internal correlation between samples is fully mined, and on this basis, the conversion of deep coding features to the graph sample set is realized, which serves as the input of the subsequent unsupervised directed hierarchical graph network (UDHGN). Finally, the deep representation features extracted by the UDHGN are further fed into the density-based spatial clustering of applications with noise (DBSCAN) model to complete the determination of category information. A total of three cases based on key functional components and manipulator are employed for performance verification. The comprehensive diagnosis results all show that the proposed CCAE-UDHGN-CR model can effectively alleviate the dependence on label information while maintaining excellent diagnosis performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nusiew完成签到,获得积分10
5秒前
joker完成签到 ,获得积分10
8秒前
yeape完成签到,获得积分10
8秒前
mike2012完成签到 ,获得积分10
11秒前
小墨墨完成签到 ,获得积分10
11秒前
闻屿完成签到,获得积分10
13秒前
lamer完成签到,获得积分10
15秒前
evy发布了新的文献求助10
17秒前
hdc12138完成签到 ,获得积分10
17秒前
火星上小土豆完成签到 ,获得积分10
17秒前
wwwy007完成签到,获得积分20
20秒前
hayden完成签到 ,获得积分10
26秒前
西陆完成签到,获得积分10
32秒前
hanshishengye完成签到 ,获得积分10
37秒前
非我完成签到 ,获得积分10
37秒前
zyw完成签到 ,获得积分10
42秒前
光亮若翠完成签到,获得积分10
42秒前
44秒前
49秒前
JamesPei应助周小鱼采纳,获得10
51秒前
Faine完成签到 ,获得积分10
55秒前
坚持就是胜利完成签到 ,获得积分10
59秒前
Zero完成签到,获得积分10
1分钟前
1分钟前
yanhao发布了新的文献求助10
1分钟前
1分钟前
taipingyang完成签到,获得积分10
1分钟前
马大翔应助科研通管家采纳,获得50
1分钟前
周小鱼发布了新的文献求助10
1分钟前
一个没自信的boy完成签到 ,获得积分10
1分钟前
Chang完成签到 ,获得积分0
1分钟前
呆萌的绿竹完成签到,获得积分10
1分钟前
鞘皮完成签到,获得积分10
1分钟前
Driscoll完成签到 ,获得积分10
1分钟前
刺猬完成签到,获得积分10
1分钟前
ovood完成签到 ,获得积分10
1分钟前
sunnyqqz完成签到,获得积分10
1分钟前
太阳完成签到 ,获得积分10
1分钟前
朴实的老虎完成签到,获得积分10
1分钟前
宛宛完成签到,获得积分10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793757
关于积分的说明 7807197
捐赠科研通 2450021
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350