异质结
材料科学
兴奋剂
化学气相沉积
光电二极管
分析化学(期刊)
光电子学
p-n结
量子隧道
半导体
化学
色谱法
作者
Van Tu Vu,Thanh Luan Phan,Thuy Vu,Mi Hyang Park,van Gooitzen Dam,Viet Q. Bui,Kunnyun Kim,Young Hee Lee,Woo Jong Yu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-08-01
卷期号:16 (8): 12073-12082
被引量:14
标识
DOI:10.1021/acsnano.2c02242
摘要
In this study, selective Nb doping (P-type) at the WS2 layer in a WS2–MoS2 lateral heterostructure via a chemical vapor deposition (CVD) method using a solution-phase precursor containing W, Mo, and Nb atoms is proposed. The different chemical activity reactivity (MoO3 > WO3 > Nb2O5) enable the separation of the growth temperature of intrinsic MoS2 to 700 °C (first grown inner layer) and Nb-doped WS2 to 800 °C (second grown outer layer). By controlling the Nb/(W+Nb) molar ratio in the solution precursor, the hole carrier density in the p-type WS2 layer is selectively controlled from approximately 1.87 × 107/cm2 at 1.5 at.% Nb to approximately 1.16 × 1013/cm2 at 8.1 at.% Nb, while the electron carrier density in n-type MoS2 shows negligible change with variation of the Nb molar ratio. As a result, the electrical behavior of the WS2–MoS2 heterostructure transforms from the N–N junction (0 at.% Nb) to the P–N junction (4.5 at.% Nb) and the P–N tunnel junction (8.1 at.% Nb). The band-to-band tunneling at the P–N tunnel junction (8.1 at.% Nb) is eliminated by applying negative gate bias, resulting in a maximum rectification ratio (105) and a minimum channel resistance (108 Ω). With this optimized photodiode (8.1 at.% Nb at Vg = −30 V), an Iphoto/Idark ratio of 6000 and a detectivity of 1.1 × 1014 Jones are achieved, which are approximately 20 and 3 times higher, respectively, than the previously reported highest values for CVD-grown transition-metal dichalcogenide P–N junctions.
科研通智能强力驱动
Strongly Powered by AbleSci AI