Faster object detector for drone-captured images

计算机科学 人工智能 无人机 目标检测 计算机视觉 合并(版本控制) 特征(语言学) 深度学习 探测器 特征提取 卷积(计算机科学) 模式识别(心理学) 背景(考古学) 人工神经网络 哲学 古生物学 生物 电信 遗传学 语言学 情报检索
作者
Lei Zhao,Quan Zhang,Bo Peng,Yangyi Liu
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:31 (04) 被引量:1
标识
DOI:10.1117/1.jei.31.4.043033
摘要

Object detection based on computer vision is becoming popular in drone-captured images. However, real-time object detection in unmanned aerial vehicle (UAV) scenarios is a huge challenge for low-end devices. To deal with the problem, we have improved YOLOv3-tiny in the following aspects. First, the label rewriting problem, which is caused by network structure and dataset of YOLOv3-tiny in drone-captured images detection, is very serious. The method of increasing the size of the predicted feature map is used to reduce the ratio of label rewriting. Second, the features of small targets will be reduced in a small feature map, but the context information with large receptive fields in it can improve the performance of small target detection. So we use dilated convolution to expand the receptive field without reducing the size of the feature map. Third, multiscale feature fusion is very helpful for small target detection. The multidilated module is adopted to merge features in earlier layer and deeper layers. Finally, a pretraining strategy combining copy-paste data augmentation method is proposed to learn more features from categories with a small number of samples. We evaluated our model on the VisDrone2019-Det test set. It achieves compelling results compared to the counterparts of YOLOv3-tiny, including ∼86.1 % decline in model size, increasing ∼19.2 % AP50. Although our model is slower than YOLOv3-tiny, it is 2.96 times faster than YOLOv3. The results of experiments verify that our network is more effective than YOLOv3-tiny. It is more suitable for UAV object detection applications on low-end devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ningliangming完成签到,获得积分20
3秒前
4秒前
优秀乐松发布了新的文献求助10
4秒前
dzhe发布了新的文献求助10
5秒前
5秒前
搜集达人应助溯桀采纳,获得10
7秒前
茉莉发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
Ogai完成签到,获得积分10
11秒前
11秒前
传奇3应助无辜笑容采纳,获得10
12秒前
12秒前
Ningliangming关注了科研通微信公众号
14秒前
自由颖完成签到,获得积分10
15秒前
monkey发布了新的文献求助10
15秒前
BY0131发布了新的文献求助10
17秒前
领导范儿应助暮色采纳,获得10
17秒前
复杂芷容发布了新的文献求助30
18秒前
18秒前
Lucas应助dzhe采纳,获得10
18秒前
自由颖发布了新的文献求助10
19秒前
20秒前
21秒前
23秒前
无辜笑容发布了新的文献求助10
24秒前
雪白巨人发布了新的文献求助10
24秒前
25秒前
8R60d8应助BY0131采纳,获得10
25秒前
155发布了新的文献求助10
27秒前
dzhe完成签到,获得积分10
29秒前
张丫丫发布了新的文献求助30
30秒前
李爱国应助kelvin采纳,获得50
31秒前
wanna发布了新的文献求助10
34秒前
xiangbobo0129完成签到,获得积分10
34秒前
优秀乐松完成签到,获得积分20
34秒前
majiko完成签到,获得积分10
35秒前
佛人世间应助327采纳,获得10
35秒前
LaTeXer应助复杂芷容采纳,获得50
37秒前
39秒前
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958164
求助须知:如何正确求助?哪些是违规求助? 3504370
关于积分的说明 11118094
捐赠科研通 3235637
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547