已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A fast collision detection method based on point clouds and stretched primitives for manipulator obstacle-avoidance motion planning

计算机科学 避碰 避障 操纵器(设备) 障碍物 点(几何) 碰撞检测 碰撞 点云 运动(物理) 运动规划 机器人 模拟 计算机视觉 人工智能 实时计算 移动机器人 几何学 数学 计算机安全 政治学 法学
作者
Pengju Yang,Feng Shen,Dingjie Xu,Ronghai Liu
出处
期刊:International Journal of Advanced Robotic Systems [SAGE]
卷期号:21 (5)
标识
DOI:10.1177/17298806241283382
摘要

It is essential to efficiently perform collision detection for robotic manipulators obstacle-avoidance planning. Existing methods are excellent when manipulator links are simple and obstacles are convex. But they cannot keep the accuracy and the efficiency at the same time when manipulator links or obstacles are nonconvex. To decrease the computing time and keep a high accuracy, this article presents a collision detection method based on point clouds and stretched primitives (PCSP). In traditional methods, obstacles are often represented either by a convex body or enormous amounts of points. But this needs a trade-off between the accuracy and the computing time when obstacles are concave. In the proposed method, we represent obstacles and complex manipulator links as stretched geometric bodies while simple manipulator links are enclosed by capsules with different sizes. The stretched body is constructed by the original point cloud from sensors but it only requires a small number of points to approximate the original object. We conducted the simulation experiment in our specific scenarios, and the results indicated that PCSP required less computing time while maintaining a high level of accuracy compared to existing methods. We also conducted standard benchmark tests in general scenarios, which showed that PCSP had advantages over libraries based on bounding volume hierarchies when concave objects are close together. Finally, we implemented PCSP for a manipulator obstacle-avoidance motion planning in a real-world environment, which demonstrated that PCSP was effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Siri发布了新的文献求助10
刚刚
激昂的迎荷完成签到,获得积分20
2秒前
3秒前
4秒前
青青闭上眼睛完成签到,获得积分10
4秒前
sciscisci完成签到 ,获得积分10
5秒前
6秒前
郑博文完成签到,获得积分10
6秒前
hjy完成签到 ,获得积分10
10秒前
12秒前
慕青应助fekngln采纳,获得10
15秒前
20秒前
21秒前
21秒前
22秒前
TY完成签到,获得积分20
24秒前
坦率的跳跳糖完成签到 ,获得积分10
25秒前
有风的地方完成签到 ,获得积分10
25秒前
TY发布了新的文献求助10
28秒前
冷静剑成发布了新的文献求助10
28秒前
mymEN完成签到 ,获得积分10
29秒前
29秒前
CodeCraft应助YUAN采纳,获得10
30秒前
Samar完成签到 ,获得积分10
31秒前
LI完成签到,获得积分10
31秒前
35秒前
37秒前
木头人应助mark33442采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
orixero应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
38秒前
赘婿应助科研通管家采纳,获得10
38秒前
Ava应助科研通管家采纳,获得10
38秒前
CipherSage应助科研通管家采纳,获得10
38秒前
爆米花应助科研通管家采纳,获得10
39秒前
39秒前
英俊的铭应助俟风落秋叶采纳,获得10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497161
求助须知:如何正确求助?哪些是违规求助? 3081748
关于积分的说明 9169147
捐赠科研通 2774867
什么是DOI,文献DOI怎么找? 1522615
邀请新用户注册赠送积分活动 706176
科研通“疑难数据库(出版商)”最低求助积分说明 703222