Segmentation-Free Velocity Field Super-Resolution on 4D Flow MRI

平滑的 算法 计算 噪音(视频) 分割 计算机视觉 成像体模 人工智能 图像分割 图像分辨率 计算机科学 信噪比(成像) 模式识别(心理学) 图像(数学) 物理 光学 电信
作者
Sébastien Levilly,Saïd Moussaoui,Jean‐Michel Serfaty
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5637-5649
标识
DOI:10.1109/tip.2024.3470553
摘要

Blood flow observation is of high interest in cardiovascular disease diagnosis and assessment.For this purpose, 2D Phase-Contrast MRI is widely used in the clinical routine.4D flow MRI sequences, which dynamically image the anatomic shape and velocity vectors within a region of interest, are promising but rarely used due to their low resolution and signal-to-noise ratio (SNR).Computational fluid dynamics (CFD) simulation is considered as a reference solution for resolution enhancement.However, its precision relies on image segmentation and a clinical expertise for the definition of the vessel borders.The main contribution of this paper is a Segmentation-Free Super-Resolution (SFSR) algorithm.Based on inverse problem methodology, SFSR relies on minimizing a compound criterion involving: a data fidelity term, a fluid mechanics term, and a spatial velocity smoothing term.The proposed algorithm is evaluated with respect to state-of-theart solutions, in terms of quantification error and computation time, on a synthetic 3D dataset with several noise levels, resulting in a 59% RMSE improvement and factor 2 super-resolution with a noise standard deviation of 5% of the Venc.Finally, its performance is demonstrated, with a scale factor of 2 and 3, on a pulsed flow phantom dataset with more complex patterns.The application on in-vivo were achievable within the 10 min.computation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LBaaX8发布了新的文献求助20
刚刚
yoga发布了新的文献求助10
刚刚
fzzf发布了新的文献求助30
1秒前
yuting发布了新的文献求助10
2秒前
鱼鱼鱼发布了新的文献求助10
4秒前
Liang完成签到,获得积分10
5秒前
bofu发布了新的文献求助10
5秒前
8秒前
9秒前
王天天完成签到 ,获得积分10
10秒前
bofu发布了新的文献求助10
11秒前
yuting完成签到,获得积分10
12秒前
思源应助英俊的晟睿采纳,获得10
12秒前
13秒前
13秒前
脑洞疼应助陈佳采纳,获得10
14秒前
拼搏的潘子完成签到,获得积分10
14秒前
14秒前
理想三寻完成签到,获得积分10
17秒前
EasonYao发布了新的文献求助10
18秒前
李爱国应助研友_LBaaX8采纳,获得10
19秒前
19秒前
乐乐应助yoyo采纳,获得10
20秒前
喜悦幻灵完成签到,获得积分10
21秒前
珍珠老爹应助博修采纳,获得10
21秒前
淼鑫发布了新的文献求助10
22秒前
开心的松思完成签到,获得积分10
22秒前
Wakey发布了新的文献求助10
24秒前
zyj完成签到,获得积分10
24秒前
24秒前
ziying126发布了新的文献求助10
26秒前
FashionBoy应助超帅的悟空采纳,获得10
29秒前
李大了发布了新的文献求助20
29秒前
田様应助joysa采纳,获得10
30秒前
慕青应助叶y采纳,获得10
32秒前
阿航完成签到,获得积分10
33秒前
虚心蜗牛完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150