Abstract To meet selective adsorption toward trifluralin, a novel molecularly imprinted polymer (MIP) was fabricated by the dummy template molecular imprinting technology. First, computational simulation was performed to select a suitable dummy template, 3,5‐dinitro‐4‐methylbenzoic acid (T1), based on the maximum basis set superposition error (BSSE)‐corrected binding interaction energy (ΔE) of the monomer N ‐vinylpyrrolidone (NVP)‐T1 complex and its structural overlap with trifluralin. Then, the MIP was prepared via the bulk polymerization. The adsorption experiments showed the MIP exhibited a trifluralin adsorption capacity of 5.1 mg g −1 , an imprinting factor (IF) of 2.2, and short adsorption equilibrium time of 5 min. The adsorption of trifluralin conformed to the Freundlich adsorption ( R 2 = 0.985) and pseudo‐second‐order model ( R 2 = 0.999). In addition, the MIP exhibited selectivity to trifluralin over other adsorbents, including structural analogs (pendimethalin and oryzalin), pesticide (carbendazim), and nitrocompounds (nitrofurantoin, furazolidone, and furaltadone), with the selectivity factor ( β ) in the range of 1.2–3.0, respectively. In trifluralin/oryzalin mixture, the IF toward oryzalin was still as high as 1.9. The removal rate of the MIP to trifluralin in environmental water samples ranged from 90.08% to 99.04%. This study provides theoretical and experimental insights for the preparation of MIP using dummy templates.