亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep unfolding network with spatial alignment for multi-modal MRI reconstruction

可解释性 模态(人机交互) 人工智能 情态动词 计算机科学 过程(计算) 计算机视觉 深度学习 迭代重建 模式识别(心理学) 算法 操作系统 化学 高分子化学
作者
Hao Zhang,Qi Wang,Jun Shi,Shihui Ying,Zhijie Wen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:99: 103331-103331 被引量:4
标识
DOI:10.1016/j.media.2024.103331
摘要

Multi-modal Magnetic Resonance Imaging (MRI) offers complementary diagnostic information, but some modalities are limited by the long scanning time. To accelerate the whole acquisition process, MRI reconstruction of one modality from highly under-sampled k-space data with another fully-sampled reference modality is an efficient solution. However, the misalignment between modalities, which is common in clinic practice, can negatively affect reconstruction quality. Existing deep learning-based methods that account for inter-modality misalignment perform better, but still share two main common limitations: (1) The spatial alignment task is not adaptively integrated with the reconstruction process, resulting in insufficient complementarity between the two tasks; (2) the entire framework has weak interpretability. In this paper, we construct a novel Deep Unfolding Network with Spatial Alignment, termed DUN-SA, to appropriately embed the spatial alignment task into the reconstruction process. Concretely, we derive a novel joint alignment-reconstruction model with a specially designed aligned cross-modal prior term. By relaxing the model into cross-modal spatial alignment and multi-modal reconstruction tasks, we propose an effective algorithm to solve this model alternatively. Then, we unfold the iterative stages of the proposed algorithm and design corresponding network modules to build DUN-SA with interpretability. Through end-to-end training, we effectively compensate for spatial misalignment using only reconstruction loss, and utilize the progressively aligned reference modality to provide inter-modality prior to improve the reconstruction of the target modality. Comprehensive experiments on four real datasets demonstrate that our method exhibits superior reconstruction performance compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
41秒前
守一完成签到,获得积分10
44秒前
46秒前
wodetaiyangLLL完成签到 ,获得积分10
55秒前
58秒前
量子星尘发布了新的文献求助150
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
2分钟前
慕青应助Wei采纳,获得10
2分钟前
2分钟前
Virtual举报可靠的绝音求助涉嫌违规
2分钟前
yyds完成签到,获得积分0
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
柯语雪完成签到 ,获得积分10
3分钟前
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
吴彦祖发布了新的文献求助10
4分钟前
4分钟前
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
6分钟前
Dreamer.发布了新的文献求助10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
星辰大海应助cerium1925采纳,获得10
7分钟前
馆长应助科研通管家采纳,获得10
7分钟前
赘婿应助科研通管家采纳,获得10
7分钟前
7分钟前
严冰蝶完成签到 ,获得积分10
8分钟前
cerium1925发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595764
求助须知:如何正确求助?哪些是违规求助? 4008008
关于积分的说明 12408755
捐赠科研通 3686743
什么是DOI,文献DOI怎么找? 2032042
邀请新用户注册赠送积分活动 1065278
科研通“疑难数据库(出版商)”最低求助积分说明 950616