Deep unfolding network with spatial alignment for multi-modal MRI reconstruction

可解释性 模态(人机交互) 人工智能 情态动词 计算机科学 过程(计算) 计算机视觉 深度学习 迭代重建 模式识别(心理学) 算法 操作系统 化学 高分子化学
作者
Hao Zhang,Qi Wang,Jun Shi,Shihui Ying,Zhijie Wen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103331-103331
标识
DOI:10.1016/j.media.2024.103331
摘要

Multi-modal Magnetic Resonance Imaging (MRI) offers complementary diagnostic information, but some modalities are limited by the long scanning time. To accelerate the whole acquisition process, MRI reconstruction of one modality from highly under-sampled k-space data with another fully-sampled reference modality is an efficient solution. However, the misalignment between modalities, which is common in clinic practice, can negatively affect reconstruction quality. Existing deep learning-based methods that account for inter-modality misalignment perform better, but still share two main common limitations: (1) The spatial alignment task is not adaptively integrated with the reconstruction process, resulting in insufficient complementarity between the two tasks; (2) the entire framework has weak interpretability. In this paper, we construct a novel Deep Unfolding Network with Spatial Alignment, termed DUN-SA, to appropriately embed the spatial alignment task into the reconstruction process. Concretely, we derive a novel joint alignment-reconstruction model with a specially designed aligned cross-modal prior term. By relaxing the model into cross-modal spatial alignment and multi-modal reconstruction tasks, we propose an effective algorithm to solve this model alternatively. Then, we unfold the iterative stages of the proposed algorithm and design corresponding network modules to build DUN-SA with interpretability. Through end-to-end training, we effectively compensate for spatial misalignment using only reconstruction loss, and utilize the progressively aligned reference modality to provide inter-modality prior to improve the reconstruction of the target modality. Comprehensive experiments on four real datasets demonstrate that our method exhibits superior reconstruction performance compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助10
刚刚
HEnli应助陛下采纳,获得10
1秒前
Mia应助陛下采纳,获得10
1秒前
2秒前
2秒前
怕黑的道天完成签到,获得积分10
4秒前
薄荷发布了新的文献求助10
4秒前
愉快的真应助thomas采纳,获得10
4秒前
Wayne发布了新的文献求助30
5秒前
vic完成签到,获得积分10
5秒前
坤坤完成签到,获得积分10
5秒前
繁荣的向秋完成签到,获得积分10
5秒前
5秒前
7秒前
I Think完成签到,获得积分10
7秒前
feng发布了新的文献求助10
7秒前
7秒前
zzzhhh发布了新的文献求助10
8秒前
敬老院N号应助在望采纳,获得50
10秒前
Jasper应助hwezhu采纳,获得10
10秒前
10秒前
可靠豆芽完成签到,获得积分10
10秒前
yj完成签到,获得积分10
11秒前
Hello应助Billy采纳,获得10
11秒前
13秒前
chaochao发布了新的文献求助50
13秒前
哎嘿应助dd采纳,获得10
14秒前
zzzhhh完成签到,获得积分10
15秒前
彭于晏应助lsy采纳,获得10
15秒前
地球发布了新的文献求助10
16秒前
16秒前
17秒前
梦想完成签到,获得积分10
17秒前
无水乙醚完成签到,获得积分10
18秒前
上官若男应助执着的笑南采纳,获得10
18秒前
18秒前
柿饼完成签到,获得积分10
20秒前
hwezhu发布了新的文献求助10
20秒前
小趴发布了新的文献求助10
21秒前
小马哥发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 500
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3105137
求助须知:如何正确求助?哪些是违规求助? 2756288
关于积分的说明 7638684
捐赠科研通 2410249
什么是DOI,文献DOI怎么找? 1278761
科研通“疑难数据库(出版商)”最低求助积分说明 617495
版权声明 599262