亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep unfolding network with spatial alignment for multi-modal MRI reconstruction

可解释性 模态(人机交互) 人工智能 情态动词 计算机科学 过程(计算) 计算机视觉 深度学习 迭代重建 模式识别(心理学) 算法 高分子化学 化学 操作系统
作者
Hao Zhang,Qi Wang,Jun Shi,Shihui Ying,Zhijie Wen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103331-103331 被引量:5
标识
DOI:10.1016/j.media.2024.103331
摘要

Multi-modal Magnetic Resonance Imaging (MRI) offers complementary diagnostic information, but some modalities are limited by the long scanning time. To accelerate the whole acquisition process, MRI reconstruction of one modality from highly under-sampled k-space data with another fully-sampled reference modality is an efficient solution. However, the misalignment between modalities, which is common in clinic practice, can negatively affect reconstruction quality. Existing deep learning-based methods that account for inter-modality misalignment perform better, but still share two main common limitations: (1) The spatial alignment task is not adaptively integrated with the reconstruction process, resulting in insufficient complementarity between the two tasks; (2) the entire framework has weak interpretability. In this paper, we construct a novel Deep Unfolding Network with Spatial Alignment, termed DUN-SA, to appropriately embed the spatial alignment task into the reconstruction process. Concretely, we derive a novel joint alignment-reconstruction model with a specially designed aligned cross-modal prior term. By relaxing the model into cross-modal spatial alignment and multi-modal reconstruction tasks, we propose an effective algorithm to solve this model alternatively. Then, we unfold the iterative stages of the proposed algorithm and design corresponding network modules to build DUN-SA with interpretability. Through end-to-end training, we effectively compensate for spatial misalignment using only reconstruction loss, and utilize the progressively aligned reference modality to provide inter-modality prior to improve the reconstruction of the target modality. Comprehensive experiments on four real datasets demonstrate that our method exhibits superior reconstruction performance compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助辛苦打工人采纳,获得10
3秒前
共享精神应助安一采纳,获得10
15秒前
烟消云散完成签到,获得积分10
23秒前
34秒前
j7完成签到,获得积分10
36秒前
星辰大海应助Dewcy采纳,获得10
40秒前
49秒前
Dewcy发布了新的文献求助10
53秒前
1分钟前
1分钟前
桐夜完成签到 ,获得积分10
1分钟前
1分钟前
希望天下0贩的0应助tantan采纳,获得10
1分钟前
1分钟前
安一发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
xxxxxxxxx完成签到 ,获得积分10
1分钟前
1分钟前
JamesPei应助安静的泥猴桃采纳,获得10
1分钟前
1分钟前
香菜大王发布了新的文献求助10
2分钟前
2分钟前
笑声像鸭子叫完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
一只不受管束的小狸Miao完成签到 ,获得积分10
2分钟前
Hello应助赶due小天才采纳,获得10
2分钟前
2分钟前
CodeCraft应助辛苦打工人采纳,获得10
2分钟前
面包战士发布了新的文献求助10
2分钟前
顺利的边牧完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
坐雨赏花完成签到 ,获得积分10
2分钟前
星辰大海应助zhenzhen采纳,获得10
2分钟前
Lucas应助玖依采纳,获得10
2分钟前
Lucas应助面包战士采纳,获得10
2分钟前
安一发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875673
求助须知:如何正确求助?哪些是违规求助? 6519832
关于积分的说明 15677462
捐赠科研通 4993667
什么是DOI,文献DOI怎么找? 2691595
邀请新用户注册赠送积分活动 1633827
关于科研通互助平台的介绍 1591483