亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep unfolding network with spatial alignment for multi-modal MRI reconstruction

可解释性 模态(人机交互) 人工智能 情态动词 计算机科学 过程(计算) 计算机视觉 深度学习 迭代重建 模式识别(心理学) 算法 高分子化学 化学 操作系统
作者
Hao Zhang,Qi Wang,Jun Shi,Shihui Ying,Zhijie Wen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:99: 103331-103331 被引量:4
标识
DOI:10.1016/j.media.2024.103331
摘要

Multi-modal Magnetic Resonance Imaging (MRI) offers complementary diagnostic information, but some modalities are limited by the long scanning time. To accelerate the whole acquisition process, MRI reconstruction of one modality from highly under-sampled k-space data with another fully-sampled reference modality is an efficient solution. However, the misalignment between modalities, which is common in clinic practice, can negatively affect reconstruction quality. Existing deep learning-based methods that account for inter-modality misalignment perform better, but still share two main common limitations: (1) The spatial alignment task is not adaptively integrated with the reconstruction process, resulting in insufficient complementarity between the two tasks; (2) the entire framework has weak interpretability. In this paper, we construct a novel Deep Unfolding Network with Spatial Alignment, termed DUN-SA, to appropriately embed the spatial alignment task into the reconstruction process. Concretely, we derive a novel joint alignment-reconstruction model with a specially designed aligned cross-modal prior term. By relaxing the model into cross-modal spatial alignment and multi-modal reconstruction tasks, we propose an effective algorithm to solve this model alternatively. Then, we unfold the iterative stages of the proposed algorithm and design corresponding network modules to build DUN-SA with interpretability. Through end-to-end training, we effectively compensate for spatial misalignment using only reconstruction loss, and utilize the progressively aligned reference modality to provide inter-modality prior to improve the reconstruction of the target modality. Comprehensive experiments on four real datasets demonstrate that our method exhibits superior reconstruction performance compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
8秒前
huihongzeng完成签到,获得积分20
12秒前
12秒前
Ljm关注了科研通微信公众号
13秒前
14秒前
凶狠的白桃完成签到 ,获得积分10
18秒前
19秒前
songjing发布了新的文献求助10
21秒前
yxl要顺利毕业_发6篇C完成签到 ,获得积分10
21秒前
24秒前
曾经的电脑完成签到 ,获得积分10
25秒前
8R60d8应助Kirito采纳,获得10
26秒前
27秒前
songjing完成签到,获得积分10
27秒前
汉堡包应助ice采纳,获得10
28秒前
香蕉觅云应助songjing采纳,获得10
32秒前
32秒前
Ljm发布了新的文献求助10
33秒前
一只东北鸟完成签到 ,获得积分10
37秒前
37秒前
小袁完成签到 ,获得积分10
44秒前
45秒前
48秒前
48秒前
永远少年完成签到,获得积分10
51秒前
shaylie完成签到 ,获得积分10
1分钟前
xdmhv完成签到 ,获得积分10
1分钟前
科研小白阳阳完成签到,获得积分10
1分钟前
忧心的曼凝完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Anthonywll完成签到 ,获得积分10
1分钟前
酷波er应助忧心的曼凝采纳,获得10
1分钟前
SS完成签到,获得积分0
1分钟前
开霁完成签到 ,获得积分10
1分钟前
xinqianying完成签到 ,获得积分10
2分钟前
清樾完成签到 ,获得积分10
2分钟前
HS完成签到,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3995047
求助须知:如何正确求助?哪些是违规求助? 3535108
关于积分的说明 11267090
捐赠科研通 3274893
什么是DOI,文献DOI怎么找? 1806498
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809764