已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep unfolding network with spatial alignment for multi-modal MRI reconstruction

可解释性 模态(人机交互) 人工智能 情态动词 计算机科学 过程(计算) 计算机视觉 深度学习 迭代重建 模式识别(心理学) 算法 操作系统 化学 高分子化学
作者
Hao Zhang,Qi Wang,Jun Shi,Shihui Ying,Zhijie Wen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103331-103331 被引量:5
标识
DOI:10.1016/j.media.2024.103331
摘要

Multi-modal Magnetic Resonance Imaging (MRI) offers complementary diagnostic information, but some modalities are limited by the long scanning time. To accelerate the whole acquisition process, MRI reconstruction of one modality from highly under-sampled k-space data with another fully-sampled reference modality is an efficient solution. However, the misalignment between modalities, which is common in clinic practice, can negatively affect reconstruction quality. Existing deep learning-based methods that account for inter-modality misalignment perform better, but still share two main common limitations: (1) The spatial alignment task is not adaptively integrated with the reconstruction process, resulting in insufficient complementarity between the two tasks; (2) the entire framework has weak interpretability. In this paper, we construct a novel Deep Unfolding Network with Spatial Alignment, termed DUN-SA, to appropriately embed the spatial alignment task into the reconstruction process. Concretely, we derive a novel joint alignment-reconstruction model with a specially designed aligned cross-modal prior term. By relaxing the model into cross-modal spatial alignment and multi-modal reconstruction tasks, we propose an effective algorithm to solve this model alternatively. Then, we unfold the iterative stages of the proposed algorithm and design corresponding network modules to build DUN-SA with interpretability. Through end-to-end training, we effectively compensate for spatial misalignment using only reconstruction loss, and utilize the progressively aligned reference modality to provide inter-modality prior to improve the reconstruction of the target modality. Comprehensive experiments on four real datasets demonstrate that our method exhibits superior reconstruction performance compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助prrrratt采纳,获得10
1秒前
燚槿完成签到 ,获得积分10
3秒前
田様应助笨笨桐采纳,获得10
3秒前
3秒前
4秒前
ding应助lingyan采纳,获得10
6秒前
自信萃完成签到 ,获得积分10
6秒前
林凯菲完成签到,获得积分10
7秒前
7秒前
尹沐完成签到 ,获得积分10
9秒前
乐乐应助卷卷采纳,获得30
9秒前
9秒前
11秒前
映泧完成签到,获得积分10
11秒前
qing发布了新的文献求助10
11秒前
prrrratt发布了新的文献求助10
12秒前
刺五加完成签到 ,获得积分10
13秒前
Delight完成签到 ,获得积分0
14秒前
14秒前
零四零零柒贰完成签到 ,获得积分10
15秒前
王七七发布了新的文献求助10
15秒前
15秒前
624发布了新的文献求助30
15秒前
科研通AI6应助猫猫猫采纳,获得10
16秒前
16秒前
18秒前
无语伦比完成签到 ,获得积分10
18秒前
19秒前
candy完成签到 ,获得积分10
19秒前
哈哈哈发布了新的文献求助10
19秒前
20秒前
ceeray23发布了新的文献求助20
20秒前
陈博儿发布了新的文献求助30
20秒前
香蕉觅云应助于鱼采纳,获得10
21秒前
23秒前
所所应助大方雁露采纳,获得10
24秒前
何劲松发布了新的文献求助10
25秒前
郝誉发布了新的文献求助10
26秒前
左西完成签到 ,获得积分10
28秒前
何劲松完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590129
求助须知:如何正确求助?哪些是违规求助? 4674579
关于积分的说明 14794548
捐赠科研通 4630299
什么是DOI,文献DOI怎么找? 2532556
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571