亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep unfolding network with spatial alignment for multi-modal MRI reconstruction

可解释性 模态(人机交互) 人工智能 情态动词 计算机科学 过程(计算) 计算机视觉 深度学习 迭代重建 模式识别(心理学) 算法 操作系统 化学 高分子化学
作者
Hao Zhang,Qi Wang,Jun Shi,Shihui Ying,Zhijie Wen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103331-103331 被引量:5
标识
DOI:10.1016/j.media.2024.103331
摘要

Multi-modal Magnetic Resonance Imaging (MRI) offers complementary diagnostic information, but some modalities are limited by the long scanning time. To accelerate the whole acquisition process, MRI reconstruction of one modality from highly under-sampled k-space data with another fully-sampled reference modality is an efficient solution. However, the misalignment between modalities, which is common in clinic practice, can negatively affect reconstruction quality. Existing deep learning-based methods that account for inter-modality misalignment perform better, but still share two main common limitations: (1) The spatial alignment task is not adaptively integrated with the reconstruction process, resulting in insufficient complementarity between the two tasks; (2) the entire framework has weak interpretability. In this paper, we construct a novel Deep Unfolding Network with Spatial Alignment, termed DUN-SA, to appropriately embed the spatial alignment task into the reconstruction process. Concretely, we derive a novel joint alignment-reconstruction model with a specially designed aligned cross-modal prior term. By relaxing the model into cross-modal spatial alignment and multi-modal reconstruction tasks, we propose an effective algorithm to solve this model alternatively. Then, we unfold the iterative stages of the proposed algorithm and design corresponding network modules to build DUN-SA with interpretability. Through end-to-end training, we effectively compensate for spatial misalignment using only reconstruction loss, and utilize the progressively aligned reference modality to provide inter-modality prior to improve the reconstruction of the target modality. Comprehensive experiments on four real datasets demonstrate that our method exhibits superior reconstruction performance compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YJ888发布了新的文献求助10
4秒前
shhoing应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
爆米花应助YJ888采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
U87完成签到,获得积分10
2分钟前
2分钟前
林新宇发布了新的文献求助10
2分钟前
桐桐应助林新宇采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
林新宇发布了新的文献求助10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
林新宇发布了新的文献求助10
3分钟前
香蕉觅云应助林新宇采纳,获得10
3分钟前
大个应助koubi采纳,获得10
3分钟前
NexusExplorer应助林新宇采纳,获得10
3分钟前
3分钟前
YJ888发布了新的文献求助10
3分钟前
3分钟前
林新宇发布了新的文献求助10
3分钟前
3分钟前
Owen应助YJ888采纳,获得10
3分钟前
3分钟前
3分钟前
koubi发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543197
求助须知:如何正确求助?哪些是违规求助? 4629393
关于积分的说明 14611153
捐赠科研通 4570669
什么是DOI,文献DOI怎么找? 2505859
邀请新用户注册赠送积分活动 1483108
关于科研通互助平台的介绍 1454424