Deep unfolding network with spatial alignment for multi-modal MRI reconstruction

可解释性 模态(人机交互) 人工智能 情态动词 计算机科学 过程(计算) 计算机视觉 深度学习 迭代重建 模式识别(心理学) 算法 操作系统 化学 高分子化学
作者
Hao Zhang,Qi Wang,Jun Shi,Shihui Ying,Zhijie Wen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:99: 103331-103331 被引量:4
标识
DOI:10.1016/j.media.2024.103331
摘要

Multi-modal Magnetic Resonance Imaging (MRI) offers complementary diagnostic information, but some modalities are limited by the long scanning time. To accelerate the whole acquisition process, MRI reconstruction of one modality from highly under-sampled k-space data with another fully-sampled reference modality is an efficient solution. However, the misalignment between modalities, which is common in clinic practice, can negatively affect reconstruction quality. Existing deep learning-based methods that account for inter-modality misalignment perform better, but still share two main common limitations: (1) The spatial alignment task is not adaptively integrated with the reconstruction process, resulting in insufficient complementarity between the two tasks; (2) the entire framework has weak interpretability. In this paper, we construct a novel Deep Unfolding Network with Spatial Alignment, termed DUN-SA, to appropriately embed the spatial alignment task into the reconstruction process. Concretely, we derive a novel joint alignment-reconstruction model with a specially designed aligned cross-modal prior term. By relaxing the model into cross-modal spatial alignment and multi-modal reconstruction tasks, we propose an effective algorithm to solve this model alternatively. Then, we unfold the iterative stages of the proposed algorithm and design corresponding network modules to build DUN-SA with interpretability. Through end-to-end training, we effectively compensate for spatial misalignment using only reconstruction loss, and utilize the progressively aligned reference modality to provide inter-modality prior to improve the reconstruction of the target modality. Comprehensive experiments on four real datasets demonstrate that our method exhibits superior reconstruction performance compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
船长完成签到,获得积分10
刚刚
July发布了新的文献求助10
1秒前
1秒前
jiajia完成签到,获得积分10
1秒前
科研通AI2S应助jin采纳,获得30
1秒前
浮游应助科研小白采纳,获得10
3秒前
5秒前
5秒前
5秒前
6秒前
cc完成签到,获得积分10
8秒前
9秒前
李健的小迷弟应助HQQ采纳,获得10
9秒前
9秒前
9秒前
qq完成签到,获得积分10
10秒前
10秒前
wangchaofk发布了新的文献求助10
11秒前
11秒前
又又完成签到,获得积分10
11秒前
xujunzhe发布了新的文献求助100
11秒前
12秒前
bathygobius完成签到,获得积分10
12秒前
王铭轩发布了新的文献求助30
12秒前
姜姜完成签到 ,获得积分10
12秒前
哈基米发布了新的文献求助20
12秒前
自行车发布了新的文献求助10
12秒前
lindsay完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
TiAmo发布了新的文献求助10
14秒前
15秒前
jin完成签到,获得积分10
15秒前
15秒前
hss发布了新的文献求助10
15秒前
16秒前
含糊的曼冬完成签到,获得积分10
16秒前
仙子狗尾巴花完成签到,获得积分10
16秒前
董烁烨完成签到,获得积分10
17秒前
xy完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954337
求助须知:如何正确求助?哪些是违规求助? 4216768
关于积分的说明 13120430
捐赠科研通 3998854
什么是DOI,文献DOI怎么找? 2188496
邀请新用户注册赠送积分活动 1203686
关于科研通互助平台的介绍 1116079