Deep Learning-Based State-of-Health Estimation of Proton-Exchange Membrane Fuel Cells under Dynamic Operation Conditions

质子交换膜燃料电池 深度学习 电压 计算机科学 健康状况 耐久性 人工智能 采样(信号处理) 工程类 机器学习 控制理论(社会学) 汽车工程 燃料电池 探测器 电信 功率(物理) 电气工程 电池(电) 量子力学 数据库 化学工程 控制(管理) 物理
作者
Yujia Zhang,Xingwang Tang,Sichuan Xu,Chuanyu Sun
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (14): 4451-4451 被引量:1
标识
DOI:10.3390/s24144451
摘要

Proton-exchange membrane fuel cells (PEMFCs) play a crucial role in the transition to sustainable energy systems. Accurately estimating the state of health (SOH) of PEMFCs under dynamic operating conditions is essential for ensuring their reliability and longevity. This study designed dynamic operating conditions for fuel cells and conducted durability tests using both crack-free fuel cells and fuel cells with uniform cracks. Utilizing deep learning methods, we estimated the SOH of PEMFCs under dynamic operating conditions and investigated the performance of long short-term memory networks (LSTM), gated recurrent units (GRU), temporal convolutional networks (TCN), and transformer models for SOH estimation tasks. We also explored the impact of different sampling intervals and training set proportions on the predictive performance of these models. The results indicated that shorter sampling intervals and higher training set proportions significantly improve prediction accuracy. The study also highlighted the challenges posed by the presence of cracks. Cracks cause more frequent and intense voltage fluctuations, making it more difficult for the models to accurately capture the dynamic behavior of PEMFCs, thereby increasing prediction errors. However, under crack-free conditions, due to more stable voltage output, all models showed improved predictive performance. Finally, this study underscores the effectiveness of deep learning models in estimating the SOH of PEMFCs and provides insights into optimizing sampling and training strategies to enhance prediction accuracy. The findings make a significant contribution to the development of more reliable and efficient PEMFC systems for sustainable energy applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
峥2发布了新的文献求助10
1秒前
2秒前
2秒前
阿媛呐完成签到,获得积分10
3秒前
3秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
517完成签到 ,获得积分10
4秒前
kecheng应助科研通管家采纳,获得20
4秒前
羌活应助科研通管家采纳,获得10
4秒前
桃子应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
WangPanzi应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
ding应助MOMO采纳,获得10
5秒前
WX完成签到,获得积分10
5秒前
7秒前
7秒前
Akim应助114514采纳,获得10
8秒前
过丫丫发布了新的文献求助10
8秒前
归尘发布了新的文献求助10
9秒前
CodeCraft应助1177采纳,获得10
10秒前
烟花应助mol采纳,获得10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425