Prediction of CO2 content in mid-ocean ridge basalts via a machine learning approach

地质学 地幔(地质学) 玄武岩 结壳 大洋地壳 地球化学 镁铁质 大洋中脊 山脊 地球科学 俯冲 古生物学 构造学
作者
Tian-Ting Lei,Jia Liu,Qunke Xia,Jing‐Jun Zhou,Zhi-Kang Luan
出处
期刊:Geology [Geological Society of America]
标识
DOI:10.1130/g52466.1
摘要

One of the primary locations of mafic magma production on Earth is the global mid-ocean ridge system. The basalts erupted along ridges probe the upper mantle and can be used to explore the deep carbon cycle. However, mid-ocean ridge basalts (MORBs) degas heavily during magma ascent. Some incompatible-trace-element−depleted and −enriched MORBs avoid heavy degassing, and show a narrow range of CO2/Ba, which have been used to reconstruct the pre-eruptive CO2 content of primitive MORB. With an increasing amount of data, however, it has become apparent that the CO2/Ba ratios of MORBs vary significantly. We compiled a data set of the geochemical compositions of MORB glasses and melt inclusions that are not degassed significantly and used a supervised machine learning model to accurately predict CO2 contents of individual samples from the concentrations of selected elements. This approach reveals that predicted CO2 contents and CO2/Ba ratios of global MORBs are highly variable, highlighting the significance of mantle heterogeneity, which can be attributed to the interactions with deep-sourced plumes or recycled crust (oceanic crust with or without sediments). Our findings underscore the potential of machine learning as a powerful tool for investigating the intricate interplay between carbon, mantle composition, and Earth’s long-term geological processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助金属喵酱采纳,获得10
刚刚
li发布了新的文献求助10
刚刚
阿怪完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
乐乐应助耶耶耶采纳,获得10
1秒前
1秒前
零零二完成签到 ,获得积分10
1秒前
李德胜发布了新的文献求助10
1秒前
年轻的馒头完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
泡泡发布了新的文献求助10
2秒前
娜娜发布了新的文献求助10
3秒前
hanhan完成签到,获得积分20
3秒前
4秒前
blue完成签到,获得积分10
4秒前
alive完成签到,获得积分10
5秒前
领导范儿应助Aimee采纳,获得10
5秒前
葡萄橘子完成签到,获得积分10
5秒前
时光是个无赖应助东东采纳,获得10
5秒前
科研通AI2S应助77采纳,获得10
6秒前
勤劳滑板发布了新的文献求助10
6秒前
6秒前
李健的粉丝团团长应助blue采纳,获得10
6秒前
共享精神应助梦鱼采纳,获得10
6秒前
火星上友易完成签到,获得积分10
6秒前
万能图书馆应助木紫星采纳,获得10
7秒前
3333333完成签到,获得积分10
7秒前
脑洞疼应助ZBY采纳,获得10
7秒前
嘿嘿发布了新的文献求助10
8秒前
lisa发布了新的文献求助10
8秒前
8秒前
始于一完成签到,获得积分10
8秒前
Ava应助ThomasZ采纳,获得30
9秒前
居不易完成签到,获得积分10
9秒前
乌乌完成签到,获得积分10
9秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447708
求助须知:如何正确求助?哪些是违规求助? 3043487
关于积分的说明 8994272
捐赠科研通 2731873
什么是DOI,文献DOI怎么找? 1498506
科研通“疑难数据库(出版商)”最低求助积分说明 692788
邀请新用户注册赠送积分活动 690597