Application of handheld near infrared spectrometer in quality control of traditional Chinese medicine: Rapid screening and quantitative analysis of Lonicerae Japonicae Flos adulteration

弗洛斯 化学 色谱法 传统医学 生物化学 医学 芦丁 抗氧化剂
作者
Xinying Peng,Xiangyang Yu,Longzhao Lu,Xide Ye,Lingyun Zhong,Wenjun Hu,Shudong Chen,Qian Song,Yefan Cai,Jianwei Yin
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:326: 125215-125215 被引量:10
标识
DOI:10.1016/j.saa.2024.125215
摘要

Traditional Chinese medicine (TCM) prescription, with its intricate formulations and nuanced compositions, is a cornerstone of holistic health practices. However, the expansion of the TCM market has led to a surge in herb adulteration, which significantly undermines the quality and safety of these medicinal products. A case in point is Lonicerae Japonicae Flos (LJF), a widely utilized herb for treating colds, which has been adulterated by the cheaper Lonicerae Flos (LF), thereby affecting its therapeutic effectiveness. Therefore, a method utilizing handheld NIR spectroscopy combined with chemometrics has been developed to provide a portable, real-time solution for the rapid and accurate detection and quantification of adulterants in TCM. By collecting NIR spectra from LJF, LF and adulterated samples (AS), we've established a spectral database enabling deep insights into the correlation between spectral features and sample compositions. Resultantly, a classification model with a 99.58 % cross-validation accuracy, reaching 100 % for test set, effectively identified adulterants. And further spectral similarity analysis and classification identification of samples with different adulteration ratios were carried out. The cross-validation accuracy under the optimal model reached 98.38 %, and the test set accuracy was 99.20 %. In addition, the study extends to quantifying different levels of adulteration, employing 20 standard adulterated samples across a 0-100 % adulteration gradient. Via data preprocessing, feature extraction, and regression techniques, the full concentration prediction models were developed, later refined by segmenting samples based on high and low adulteration ratios. Under the SGFD_CARS_PLS (Savitzky-Golay smoothing with the first derivative_competitive adaptive reweighted sampling_partial least squares) model, exceptional performance was achieved, with a R2p of 0.983, RMSEp of 3.402, and RPDp of 7.757 for the homemade adulterated prediction set. In conclusion, the application of this technology not only improves the efficiency and accuracy of screening, but also has the advantages of low cost, easy operation and rapid results compared with traditional chemical analysis methods. It effectively protects the safety of drugs for consumers, maintains the integrity of the TCM market, and provides a strong technical support for the on-site rapid detection of TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助141592采纳,获得10
刚刚
sjr完成签到,获得积分10
刚刚
刚刚
SciGPT应助秋吉儿采纳,获得10
刚刚
陪小凯许个愿完成签到,获得积分10
刚刚
刚刚
晚灯君完成签到 ,获得积分0
1秒前
Lee发布了新的文献求助10
1秒前
1秒前
2秒前
呋喃发布了新的文献求助10
2秒前
2秒前
852应助根深者叶茂采纳,获得10
2秒前
Leixn完成签到,获得积分10
3秒前
3秒前
4秒前
sjr发布了新的文献求助10
4秒前
4秒前
Akim应助www采纳,获得10
4秒前
4秒前
Ramanujan完成签到,获得积分10
4秒前
李爱国应助105度余温采纳,获得10
4秒前
5秒前
白马非马完成签到,获得积分10
5秒前
怕孤独的问芙完成签到 ,获得积分10
5秒前
韩大王发布了新的文献求助10
5秒前
壮观梦之完成签到,获得积分10
6秒前
6秒前
丘比特应助阮科采纳,获得10
6秒前
妖怪大大发布了新的文献求助10
6秒前
风华发布了新的文献求助10
6秒前
二二春发布了新的文献求助10
7秒前
搜集达人应助小小鱼采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
7秒前
华仔应助xiaoexiaoe采纳,获得10
7秒前
7秒前
7秒前
zzx发布了新的文献求助10
7秒前
风笛完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645776
求助须知:如何正确求助?哪些是违规求助? 4769743
关于积分的说明 15032036
捐赠科研通 4804514
什么是DOI,文献DOI怎么找? 2569056
邀请新用户注册赠送积分活动 1526123
关于科研通互助平台的介绍 1485700