Application of handheld near infrared spectrometer in quality control of traditional Chinese medicine: Rapid screening and quantitative analysis of Lonicerae Japonicae Flos adulteration

弗洛斯 化学 色谱法 传统医学 生物化学 医学 芦丁 抗氧化剂
作者
Xinying Peng,Xiangyang Yu,Longzhao Lu,Xide Ye,Lingyun Zhong,Wenjun Hu,Shudong Chen,Qian Song,Yefan Cai,Jianwei Yin
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:326: 125215-125215 被引量:10
标识
DOI:10.1016/j.saa.2024.125215
摘要

Traditional Chinese medicine (TCM) prescription, with its intricate formulations and nuanced compositions, is a cornerstone of holistic health practices. However, the expansion of the TCM market has led to a surge in herb adulteration, which significantly undermines the quality and safety of these medicinal products. A case in point is Lonicerae Japonicae Flos (LJF), a widely utilized herb for treating colds, which has been adulterated by the cheaper Lonicerae Flos (LF), thereby affecting its therapeutic effectiveness. Therefore, a method utilizing handheld NIR spectroscopy combined with chemometrics has been developed to provide a portable, real-time solution for the rapid and accurate detection and quantification of adulterants in TCM. By collecting NIR spectra from LJF, LF and adulterated samples (AS), we've established a spectral database enabling deep insights into the correlation between spectral features and sample compositions. Resultantly, a classification model with a 99.58 % cross-validation accuracy, reaching 100 % for test set, effectively identified adulterants. And further spectral similarity analysis and classification identification of samples with different adulteration ratios were carried out. The cross-validation accuracy under the optimal model reached 98.38 %, and the test set accuracy was 99.20 %. In addition, the study extends to quantifying different levels of adulteration, employing 20 standard adulterated samples across a 0-100 % adulteration gradient. Via data preprocessing, feature extraction, and regression techniques, the full concentration prediction models were developed, later refined by segmenting samples based on high and low adulteration ratios. Under the SGFD_CARS_PLS (Savitzky-Golay smoothing with the first derivative_competitive adaptive reweighted sampling_partial least squares) model, exceptional performance was achieved, with a R2p of 0.983, RMSEp of 3.402, and RPDp of 7.757 for the homemade adulterated prediction set. In conclusion, the application of this technology not only improves the efficiency and accuracy of screening, but also has the advantages of low cost, easy operation and rapid results compared with traditional chemical analysis methods. It effectively protects the safety of drugs for consumers, maintains the integrity of the TCM market, and provides a strong technical support for the on-site rapid detection of TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanghongjian发布了新的文献求助10
刚刚
vv完成签到 ,获得积分10
刚刚
1秒前
3秒前
晓畅完成签到,获得积分10
5秒前
科研通AI6.1应助对称破缺采纳,获得10
8秒前
刘十一完成签到 ,获得积分10
8秒前
8秒前
慢半拍完成签到,获得积分10
8秒前
von完成签到,获得积分10
8秒前
10秒前
10秒前
10秒前
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
17263365721完成签到 ,获得积分10
10秒前
冬天的回忆完成签到 ,获得积分10
10秒前
风清扬应助科研通管家采纳,获得30
11秒前
李健应助科研通管家采纳,获得10
11秒前
dangdang应助科研通管家采纳,获得40
11秒前
11秒前
Frank应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
12秒前
Frank应助科研通管家采纳,获得10
12秒前
12秒前
烟花应助科研通管家采纳,获得10
12秒前
泽松应助科研通管家采纳,获得10
12秒前
12秒前
大个应助科研通管家采纳,获得50
12秒前
量子星尘发布了新的文献求助10
12秒前
小二郎应助Narcissus采纳,获得10
12秒前
寒冷的小熊猫完成签到,获得积分10
13秒前
14秒前
华仔应助苗苗会喵喵采纳,获得10
15秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060