MBPathNCP: A Metabolic Pathway Prediction Model for Chemicals and Enzymes Based on Network Consistency Projection

一致性(知识库) 投影(关系代数) 计算机科学 代谢途径 代谢网络 计算生物学 人工智能 化学 生物 生物化学 算法
作者
Lei Chen,Huiru Hu
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:20 被引量:4
标识
DOI:10.2174/0115748936321359240827050752
摘要

Background: Metabolic pathway is an important biological pathway in living organisms as it produces necessary energy to maintain vital movement. Although main part of metabolic pathway has been uncovered by the great efforts in recent years, its completeness is still a problem. The undetected chemical reactions in metabolic pathway have become a hinder for better understanding on its mechanism. Prediction of metabolic pathways that a chemical or enzyme can participate in is the first step to remove this hinder. Objective: This study aimed to design an effective computational method to predict the metabolic pathways of chemicals and enzymes. Methods: A new computational model was proposed to predict the metabolic pathways of chemicals and enzymes, which was called MBPathNCP. The kernels for chemicals/enzymes and pathways were constructed using the interactions of chemicals and proteins, and the validated associations between chemicals/enzymes and pathways. The network consistency projection was applied to the kernels and association adjacency matrix to yield the association score for each pair of chemicals/ enzymes and pathways. Results: Cross-validation results on this model shown its good performance. The further tests indicated the reasonability of the entire architecture and its superiority when the negative samples were much than positive samples. Conclusion: The proposed model MBPathNCP was efficient to predict the metabolic pathways of chemicals and enzymes and can be a latent useful tool to investigate metabolic pathway system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
化工人发布了新的文献求助10
刚刚
在水一方应助Return采纳,获得10
刚刚
居里夫人完成签到,获得积分10
1秒前
AAAB完成签到 ,获得积分10
1秒前
3秒前
shinn发布了新的文献求助10
3秒前
上官若男应助JUYIN采纳,获得10
3秒前
5秒前
5秒前
6秒前
赵云江完成签到,获得积分10
7秒前
99giddens给CyrusSo524的求助进行了留言
7秒前
量子星尘发布了新的文献求助10
9秒前
杨小姐完成签到,获得积分10
9秒前
天天快乐应助无情的宛儿采纳,获得10
11秒前
11秒前
HLElxs发布了新的文献求助10
12秒前
Calix完成签到,获得积分20
12秒前
QQ完成签到,获得积分10
13秒前
慕青应助威武问枫采纳,获得10
14秒前
14秒前
kwm关闭了kwm文献求助
16秒前
maodou发布了新的文献求助10
18秒前
哈哈哈应助nana采纳,获得10
19秒前
夜雨声烦发布了新的文献求助10
21秒前
Ava应助lxr采纳,获得10
22秒前
22秒前
22秒前
23秒前
Hello应助maodou采纳,获得10
24秒前
科研通AI2S应助liii采纳,获得10
24秒前
月下荷花发布了新的文献求助10
25秒前
小夭发布了新的文献求助10
26秒前
科研通AI5应助麦克采纳,获得10
26秒前
威武问枫发布了新的文献求助10
28秒前
梦的光点关注了科研通微信公众号
29秒前
FashionBoy应助傻子与白痴采纳,获得10
30秒前
Blank完成签到 ,获得积分10
30秒前
研友_VZG7GZ应助点墨采纳,获得10
31秒前
33秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980457
求助须知:如何正确求助?哪些是违规求助? 3524399
关于积分的说明 11221363
捐赠科研通 3261846
什么是DOI,文献DOI怎么找? 1800921
邀请新用户注册赠送积分活动 879507
科研通“疑难数据库(出版商)”最低求助积分说明 807283