MBPathNCP: A Metabolic Pathway Prediction Model for Chemicals and Enzymes Based on Network Consistency Projection

一致性(知识库) 投影(关系代数) 计算机科学 代谢途径 代谢网络 计算生物学 人工智能 化学 生物 生物化学 算法
作者
Lei Chen,Huiru Hu
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:20 被引量:1
标识
DOI:10.2174/0115748936321359240827050752
摘要

Background: Metabolic pathway is an important biological pathway in living organisms as it produces necessary energy to maintain vital movement. Although main part of metabolic pathway has been uncovered by the great efforts in recent years, its completeness is still a problem. The undetected chemical reactions in metabolic pathway have become a hinder for better understanding on its mechanism. Prediction of metabolic pathways that a chemical or enzyme can participate in is the first step to remove this hinder. Objective: This study aimed to design an effective computational method to predict the metabolic pathways of chemicals and enzymes. Methods: A new computational model was proposed to predict the metabolic pathways of chemicals and enzymes, which was called MBPathNCP. The kernels for chemicals/enzymes and pathways were constructed using the interactions of chemicals and proteins, and the validated associations between chemicals/enzymes and pathways. The network consistency projection was applied to the kernels and association adjacency matrix to yield the association score for each pair of chemicals/ enzymes and pathways. Results: Cross-validation results on this model shown its good performance. The further tests indicated the reasonability of the entire architecture and its superiority when the negative samples were much than positive samples. Conclusion: The proposed model MBPathNCP was efficient to predict the metabolic pathways of chemicals and enzymes and can be a latent useful tool to investigate metabolic pathway system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HS完成签到,获得积分20
刚刚
1秒前
2秒前
搜集达人应助LIANG采纳,获得10
2秒前
2秒前
3秒前
wangfu发布了新的文献求助10
3秒前
3秒前
MathFun完成签到 ,获得积分10
4秒前
Dingz完成签到,获得积分10
4秒前
心殇完成签到,获得积分10
4秒前
豆豆发布了新的文献求助10
5秒前
狂野书易完成签到,获得积分10
5秒前
5秒前
今后应助yincy采纳,获得10
5秒前
阮楷瑞发布了新的文献求助10
6秒前
LingerC发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
xu完成签到,获得积分10
7秒前
温暖幻桃发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
那英东完成签到 ,获得积分10
8秒前
8秒前
shi hui发布了新的文献求助10
9秒前
君君欧发布了新的文献求助10
10秒前
10秒前
11秒前
花城发布了新的文献求助10
11秒前
12秒前
12秒前
阿佑发布了新的文献求助10
12秒前
13秒前
小马甲应助酷酷茹嫣采纳,获得10
13秒前
13秒前
乐乐应助功不唐捐采纳,获得10
13秒前
虚心以柳发布了新的文献求助10
14秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180559
求助须知:如何正确求助?哪些是违规求助? 2830850
关于积分的说明 7981528
捐赠科研通 2492562
什么是DOI,文献DOI怎么找? 1329653
科研通“疑难数据库(出版商)”最低求助积分说明 635785
版权声明 602954