MBPathNCP: A Metabolic Pathway Prediction Model for Chemicals and Enzymes Based on Network Consistency Projection

一致性(知识库) 计算机科学 代谢途径 代谢网络 生物途径 系统生物学 计算生物学 人工智能 生物 生物化学 基因 基因表达
作者
Lei Chen,Huiru Hu
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:20 (7): 620-630 被引量:5
标识
DOI:10.2174/0115748936321359240827050752
摘要

Background: Metabolic pathway is an important biological pathway in living organisms as it produces necessary energy to maintain vital movement. Although main part of metabolic pathway has been uncovered by the great efforts in recent years, its completeness is still a problem. The undetected chemical reactions in metabolic pathway have become a hinder for better understanding on its mechanism. Prediction of metabolic pathways that a chemical or enzyme can participate in is the first step to remove this hinder. Objective: This study aimed to design an effective computational method to predict the metabolic pathways of chemicals and enzymes. Methods: A new computational model was proposed to predict the metabolic pathways of chemicals and enzymes, which was called MBPathNCP. The kernels for chemicals/enzymes and pathways were constructed using the interactions of chemicals and proteins, and the validated associations between chemicals/enzymes and pathways. The network consistency projection was applied to the kernels and association adjacency matrix to yield the association score for each pair of chemicals/ enzymes and pathways. Results: Cross-validation results on this model shown its good performance. The further tests indicated the reasonability of the entire architecture and its superiority when the negative samples were much than positive samples. Conclusion: The proposed model MBPathNCP was efficient to predict the metabolic pathways of chemicals and enzymes and can be a latent useful tool to investigate metabolic pathway system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助gdh采纳,获得10
刚刚
糖糖完成签到,获得积分10
1秒前
nacheol完成签到,获得积分10
1秒前
Jane2024完成签到,获得积分10
1秒前
2秒前
CodeCraft应助开朗依霜采纳,获得10
2秒前
喜欢看神仙打架完成签到,获得积分10
2秒前
dingdang完成签到,获得积分10
2秒前
21完成签到 ,获得积分10
2秒前
2秒前
熊尼完成签到,获得积分20
3秒前
4秒前
夏小胖发布了新的文献求助10
4秒前
milk完成签到 ,获得积分10
4秒前
4秒前
4秒前
dm关闭了dm文献求助
5秒前
jojo完成签到 ,获得积分10
5秒前
6秒前
emily完成签到,获得积分20
6秒前
肆_发布了新的文献求助10
6秒前
A132发布了新的文献求助10
6秒前
酷酷的盼山完成签到,获得积分10
7秒前
Eternity2025发布了新的文献求助10
7秒前
multi完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
taster发布了新的文献求助10
9秒前
缓慢妙芙发布了新的文献求助20
9秒前
ctttt发布了新的文献求助10
9秒前
傲娇的康乃馨完成签到,获得积分20
9秒前
9秒前
we1完成签到,获得积分20
10秒前
聂青枫完成签到,获得积分10
10秒前
完美世界应助蕾蕾蕾采纳,获得10
10秒前
WSGQT完成签到,获得积分10
11秒前
qwe完成签到,获得积分10
11秒前
11秒前
科研小白完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328