卷积神经网络
卫星
遥感
卫星图像
人工神经网络
气象学
环境科学
地质学
计算机科学
地理
人工智能
天文
物理
作者
Jonathan Frame,T. R. Gopalakrishnan Nair,Veda Sunkara,Philip Popien,Subit Chakrabarti,Tyler Anderson,Nicholas R. Leach,Colin Doyle,Thomas A. Mitchell,Beth Tellman
摘要
Abstract Rapid and accurate maps of floods across large domains, with high temporal resolution capturing event peaks, have applications for flood forecasting and resilience, damage assessment, and parametric insurance. Satellite imagery produces incomplete observations spatially and temporally, and hydrodynamic models require tradeoffs between computational efficiency and accuracy. We address these challenges with a novel flood model which predicts surface water area from the U.S. National Water Model using a convolutional neural network (NWM‐CNN). We trained NWM‐CNN on 780 flood events, at a 250 m resolution with an RMSE of 4.58% on held out validation geographies. We demonstrate NWM‐CNN across California during the 2023 atmospheric rivers, comparing predictions against Sentinel‐1 mapped flood observations. We compared historical predictions from 1979 to 2023 to flood damage reports in Sacramento County, California. Results show that NWM‐CNN captures inundation extent better than the Height Above Nearest Drainage (HAND) approach (25%–36% RMSE, respectively).
科研通智能强力驱动
Strongly Powered by AbleSci AI