Prediction of concrete compressive strength using a Deepforest-based model

抗压强度 计算机科学 复合材料 材料科学
作者
Wan Zhang,Jian Guo,Cuiping Ning,Rihua Cheng,Z. Liu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-69616-9
摘要

Concrete compressive strength testing is crucial for construction quality control. The traditional methods are both time-consuming and labor-intensive, while machine learning has been proven effective in predicting the compressive strength of concrete. However, current machine learning-based algorithms lack a thorough comparison among various models, and researchers have yet to identify the optimal predictor for concrete compressive strength. In this study, we developed 12 distinct machine learning-based regressors to conduct a thorough comparison and to identify the optimal model. To study the correlation between compressive strength and various factors, we conducted a comprehensive analysis and selected blast furnace slag, superplasticizer, age, cement, and water as the optimized factor subset. Based on this foundation, grid search and fivefold cross-validation were employed to establish the hyperparameters for each model. The results indicate that the Deepforest-based model demonstrates superior performance compared to the 12 models. For a more comprehensive evaluation of the model's performance, we compared its performance with state-of-the-art models using the same independent testing dataset. The results demonstrate that our model achieving the highest performance (R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
俏皮白云完成签到 ,获得积分10
2秒前
2秒前
GU发布了新的文献求助10
4秒前
wanci应助JZa采纳,获得10
4秒前
5秒前
nixx完成签到,获得积分10
6秒前
丁浩发布了新的文献求助10
6秒前
戴小夫发布了新的文献求助10
8秒前
8秒前
不配.应助Su采纳,获得10
9秒前
吴未完成签到,获得积分10
9秒前
老北京发布了新的文献求助10
11秒前
阿文发布了新的文献求助30
12秒前
Akim应助cg采纳,获得10
12秒前
Schwann翠星石完成签到,获得积分10
14秒前
不配.应助and采纳,获得10
14秒前
15秒前
戴小夫完成签到,获得积分10
16秒前
17秒前
情怀应助GU采纳,获得10
18秒前
顾矜应助诸葛书虫采纳,获得10
20秒前
弄香发布了新的文献求助10
20秒前
23秒前
24秒前
田様应助想早点退休采纳,获得10
26秒前
YQ发布了新的文献求助10
27秒前
27秒前
宏宏发布了新的文献求助10
30秒前
30秒前
Ava应助YQ采纳,获得10
33秒前
Henry应助皮老师采纳,获得200
33秒前
YZChen发布了新的文献求助10
34秒前
赵坤煊完成签到 ,获得积分10
36秒前
40秒前
41秒前
44秒前
45秒前
Radon发布了新的文献求助30
46秒前
bkagyin应助journey_qq采纳,获得10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079