Prediction of concrete compressive strength using a Deepforest-based model

抗压强度 计算机科学 复合材料 材料科学
作者
Wan Zhang,Jian Guo,Cuiping Ning,Rihua Cheng,Z. Liu
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-69616-9
摘要

Concrete compressive strength testing is crucial for construction quality control. The traditional methods are both time-consuming and labor-intensive, while machine learning has been proven effective in predicting the compressive strength of concrete. However, current machine learning-based algorithms lack a thorough comparison among various models, and researchers have yet to identify the optimal predictor for concrete compressive strength. In this study, we developed 12 distinct machine learning-based regressors to conduct a thorough comparison and to identify the optimal model. To study the correlation between compressive strength and various factors, we conducted a comprehensive analysis and selected blast furnace slag, superplasticizer, age, cement, and water as the optimized factor subset. Based on this foundation, grid search and fivefold cross-validation were employed to establish the hyperparameters for each model. The results indicate that the Deepforest-based model demonstrates superior performance compared to the 12 models. For a more comprehensive evaluation of the model's performance, we compared its performance with state-of-the-art models using the same independent testing dataset. The results demonstrate that our model achieving the highest performance (R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助知性的刺猬采纳,获得10
刚刚
3秒前
苹果柜子完成签到,获得积分10
3秒前
愉快的擎汉完成签到,获得积分10
4秒前
bkagyin应助不打游戏_采纳,获得10
4秒前
4秒前
cc发布了新的文献求助10
5秒前
赘婿应助没有昵称采纳,获得10
6秒前
淡淡大山发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
9秒前
斯文败类应助小卫卫采纳,获得10
12秒前
晓晓完成签到,获得积分10
12秒前
少吃一口发布了新的文献求助10
12秒前
完美世界应助99v587采纳,获得10
13秒前
14秒前
linggle发布了新的文献求助10
14秒前
14秒前
wanci应助怡然白竹采纳,获得10
16秒前
16秒前
AU完成签到,获得积分10
17秒前
17秒前
在水一方应助oneming采纳,获得10
18秒前
dawn发布了新的文献求助30
19秒前
orixero应助支代桃采纳,获得10
19秒前
Zzhangoo发布了新的文献求助10
20秒前
Orange应助安彩青采纳,获得10
20秒前
没有昵称发布了新的文献求助10
20秒前
Jasper应助naturehome采纳,获得10
21秒前
linggle完成签到,获得积分10
21秒前
24秒前
不打游戏_完成签到,获得积分10
24秒前
oh应助小智采纳,获得10
25秒前
所所应助隋阳采纳,获得10
26秒前
Ava应助一直向前采纳,获得10
28秒前
完美世界应助一直向前采纳,获得10
28秒前
我先睡了应助一直向前采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070