Concrete compressive strength testing is crucial for construction quality control. The traditional methods are both time-consuming and labor-intensive, while machine learning has been proven effective in predicting the compressive strength of concrete. However, current machine learning-based algorithms lack a thorough comparison among various models, and researchers have yet to identify the optimal predictor for concrete compressive strength. In this study, we developed 12 distinct machine learning-based regressors to conduct a thorough comparison and to identify the optimal model. To study the correlation between compressive strength and various factors, we conducted a comprehensive analysis and selected blast furnace slag, superplasticizer, age, cement, and water as the optimized factor subset. Based on this foundation, grid search and fivefold cross-validation were employed to establish the hyperparameters for each model. The results indicate that the Deepforest-based model demonstrates superior performance compared to the 12 models. For a more comprehensive evaluation of the model's performance, we compared its performance with state-of-the-art models using the same independent testing dataset. The results demonstrate that our model achieving the highest performance (R