Improving global soil moisture prediction through cluster-averaged sampling strategy

采样(信号处理) 环境科学 含水量 星团(航天器) 土壤科学 水文学(农业) 水分 气象学 计算机科学 地理 地质学 岩土工程 滤波器(信号处理) 计算机视觉 程序设计语言
作者
Qingliang Li,Qiyun Xiao,Cheng Zhang,Jinlong Zhu,Xiao Chen,Yuguang Yan,Pingping Liu,Wei Shangguan,Zhongwang Wei,Lu Li,Wenzong Dong,Yongjiu Dai
出处
期刊:Geoderma [Elsevier]
卷期号:449: 116999-116999 被引量:2
标识
DOI:10.1016/j.geoderma.2024.116999
摘要

Understanding and predicting global soil moisture (SM) is crucial for water resource management and agricultural production. While deep learning methods (DL) have shown strong performance in SM prediction, imbalances in training samples with different characteristics pose a significant challenge. We propose that improving the diversity and balance of batch training samples during gradient descent can help address this issue. To test this hypothesis, we developed a Cluster-Averaged Sampling (CAS) strategy utilizing unsupervised learning techniques. This approach involves training the model with evenly sampled data from different clusters, ensuring both sample diversity and numerical consistency within each cluster. This approach prevents the model from overemphasizing specific sample characteristics, leading to more balanced feature learning. Experiments using the LandBench1.0 dataset with five different seeds for 1-day lead-time global predictions reveal that CAS outperforms several Long Short-Term Memory (LSTM)-based models that do not employ this strategy. The median Coefficient of Determination (R2) improved by 2.36 % to 4.31 %, while Kling-Gupta Efficiency (KGE) improved by 1.95 % to 3.16 %. In high-latitude areas, R2 improvements exceeded 40 % in specific regions. To further validate CAS under realistic conditions, we tested it using the Soil Moisture Active and Passive Level 3 (SMAP-L3) satellite data for 1 to 3-day lead-time global predictions, confirming its efficacy. The study substantiates the CAS strategy and introduces a novel training method for enhancing the generalization of DL models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助科研通管家采纳,获得10
刚刚
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
oe应助科研通管家采纳,获得10
刚刚
刚刚
Jzhang应助maoer采纳,获得10
刚刚
36456657应助追寻妖妖采纳,获得10
1秒前
pluto应助追寻妖妖采纳,获得10
1秒前
Khr1stINK发布了新的文献求助10
1秒前
地质学一点完成签到,获得积分10
2秒前
2秒前
www发布了新的文献求助30
3秒前
留胡子的寄文完成签到,获得积分10
3秒前
3秒前
望北完成签到 ,获得积分10
4秒前
木木完成签到,获得积分10
4秒前
刘誉发布了新的文献求助10
4秒前
4秒前
共享精神应助学术渣渣采纳,获得10
4秒前
攀攀发布了新的文献求助10
5秒前
5秒前
6秒前
BareBear应助laoli2022采纳,获得10
6秒前
Yon完成签到 ,获得积分10
6秒前
7秒前
zt完成签到,获得积分20
7秒前
7秒前
8秒前
初心发布了新的文献求助10
8秒前
AI imaging发布了新的文献求助10
8秒前
忧虑的羊发布了新的文献求助10
8秒前
cuen完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
niuma发布了新的文献求助10
10秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522849
求助须知:如何正确求助?哪些是违规求助? 3103786
关于积分的说明 9267447
捐赠科研通 2800458
什么是DOI,文献DOI怎么找? 1536934
邀请新用户注册赠送积分活动 715309
科研通“疑难数据库(出版商)”最低求助积分说明 708693