The life cycle of large language models in education: A framework for understanding sources of bias

计算机科学 心理学
作者
Jin-Sook Lee,Yann Hicke,Renzhe Yu,Christopher Brooks,René F. Kizilcec
出处
期刊:British Journal of Educational Technology [Wiley]
标识
DOI:10.1111/bjet.13505
摘要

Abstract Large language models (LLMs) are increasingly adopted in educational contexts to provide personalized support to students and teachers. The unprecedented capacity of LLM‐based applications to understand and generate natural language can potentially improve instructional effectiveness and learning outcomes, but the integration of LLMs in education technology has renewed concerns over algorithmic bias, which may exacerbate educational inequalities. Building on prior work that mapped the traditional machine learning life cycle, we provide a framework of the LLM life cycle from the initial development of LLMs to customizing pre‐trained models for various applications in educational settings. We explain each step in the LLM life cycle and identify potential sources of bias that may arise in the context of education. We discuss why current measures of bias from traditional machine learning fail to transfer to LLM‐generated text (eg, tutoring conversations) because text encodings are high‐dimensional, there can be multiple correct responses, and tailoring responses may be pedagogically desirable rather than unfair. The proposed framework clarifies the complex nature of bias in LLM applications and provides practical guidance for their evaluation to promote educational equity. Practitioner notes What is already known about this topic The life cycle of traditional machine learning (ML) applications which focus on predicting labels is well understood. Biases are known to enter in traditional ML applications at various points in the life cycle, and methods to measure and mitigate these biases have been developed and tested. Large language models (LLMs) and other forms of generative artificial intelligence (GenAI) are increasingly adopted in education technologies (EdTech), but current evaluation approaches are not specific to the domain of education. What this paper adds A holistic perspective of the LLM life cycle with domain‐specific examples in education to highlight opportunities and challenges for incorporating natural language understanding (NLU) and natural language generation (NLG) into EdTech. Potential sources of bias are identified in each step of the LLM life cycle and discussed in the context of education. A framework for understanding where to expect potential harms of LLMs for students, teachers, and other users of GenAI technology in education, which can guide approaches to bias measurement and mitigation. Implications for practice and/or policy Education practitioners and policymakers should be aware that biases can originate from a multitude of steps in the LLM life cycle, and the life cycle perspective offers them a heuristic for asking technology developers to explain each step to assess the risk of bias. Measuring the biases of systems that use LLMs in education is more complex than with traditional ML, in large part because the evaluation of natural language generation is highly context‐dependent (eg, what counts as good feedback on an assignment varies). EdTech developers can play an important role in collecting and curating datasets for the evaluation and benchmarking of LLM applications moving forward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助Ll采纳,获得10
刚刚
乐观发卡完成签到,获得积分20
1秒前
安详的帽子完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
vivi猫小咪发布了新的文献求助10
2秒前
Sue完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
Lucas应助南方姑娘采纳,获得10
3秒前
4秒前
zhing完成签到,获得积分10
4秒前
XHH完成签到 ,获得积分0
4秒前
小蘑菇应助sv采纳,获得10
5秒前
欢呼橘子完成签到 ,获得积分10
5秒前
季夏完成签到,获得积分10
5秒前
喜悦成威发布了新的文献求助20
5秒前
大菠萝发布了新的文献求助10
6秒前
6秒前
德德发布了新的文献求助10
6秒前
天天快乐应助Silence采纳,获得10
7秒前
深爱不疑发布了新的文献求助200
7秒前
可爱的函函应助九川采纳,获得10
7秒前
科研通AI5应助端庄的黑米采纳,获得30
8秒前
md03393完成签到,获得积分10
8秒前
苏照杭应助snowdrift采纳,获得10
8秒前
esbd完成签到,获得积分10
9秒前
愉快之槐完成签到,获得积分10
9秒前
顺利涵菡发布了新的文献求助10
9秒前
Jenny应助拼搏思卉采纳,获得10
10秒前
10秒前
静时发布了新的文献求助10
10秒前
10秒前
JJlv完成签到,获得积分10
11秒前
11秒前
RMY完成签到 ,获得积分10
11秒前
12秒前
艺成成完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762