The life cycle of large language models in education: A framework for understanding sources of bias

计算机科学 心理学
作者
Jin-Sook Lee,Yann Hicke,Renzhe Yu,Christopher Brooks,René F. Kizilcec
出处
期刊:British Journal of Educational Technology [Wiley]
标识
DOI:10.1111/bjet.13505
摘要

Abstract Large language models (LLMs) are increasingly adopted in educational contexts to provide personalized support to students and teachers. The unprecedented capacity of LLM‐based applications to understand and generate natural language can potentially improve instructional effectiveness and learning outcomes, but the integration of LLMs in education technology has renewed concerns over algorithmic bias, which may exacerbate educational inequalities. Building on prior work that mapped the traditional machine learning life cycle, we provide a framework of the LLM life cycle from the initial development of LLMs to customizing pre‐trained models for various applications in educational settings. We explain each step in the LLM life cycle and identify potential sources of bias that may arise in the context of education. We discuss why current measures of bias from traditional machine learning fail to transfer to LLM‐generated text (eg, tutoring conversations) because text encodings are high‐dimensional, there can be multiple correct responses, and tailoring responses may be pedagogically desirable rather than unfair. The proposed framework clarifies the complex nature of bias in LLM applications and provides practical guidance for their evaluation to promote educational equity. Practitioner notes What is already known about this topic The life cycle of traditional machine learning (ML) applications which focus on predicting labels is well understood. Biases are known to enter in traditional ML applications at various points in the life cycle, and methods to measure and mitigate these biases have been developed and tested. Large language models (LLMs) and other forms of generative artificial intelligence (GenAI) are increasingly adopted in education technologies (EdTech), but current evaluation approaches are not specific to the domain of education. What this paper adds A holistic perspective of the LLM life cycle with domain‐specific examples in education to highlight opportunities and challenges for incorporating natural language understanding (NLU) and natural language generation (NLG) into EdTech. Potential sources of bias are identified in each step of the LLM life cycle and discussed in the context of education. A framework for understanding where to expect potential harms of LLMs for students, teachers, and other users of GenAI technology in education, which can guide approaches to bias measurement and mitigation. Implications for practice and/or policy Education practitioners and policymakers should be aware that biases can originate from a multitude of steps in the LLM life cycle, and the life cycle perspective offers them a heuristic for asking technology developers to explain each step to assess the risk of bias. Measuring the biases of systems that use LLMs in education is more complex than with traditional ML, in large part because the evaluation of natural language generation is highly context‐dependent (eg, what counts as good feedback on an assignment varies). EdTech developers can play an important role in collecting and curating datasets for the evaluation and benchmarking of LLM applications moving forward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助积极睫毛采纳,获得10
2秒前
2秒前
奇凌完成签到,获得积分10
3秒前
叶子发布了新的文献求助10
4秒前
听雨发布了新的文献求助10
4秒前
Qianfan完成签到 ,获得积分10
5秒前
阿三发布了新的文献求助10
5秒前
orixero应助147258采纳,获得10
6秒前
脑洞疼应助精炼猫薄荷采纳,获得10
6秒前
HUAN完成签到,获得积分10
7秒前
儒雅卿发布了新的文献求助10
7秒前
幽默服饰完成签到,获得积分10
8秒前
坚定幻嫣发布了新的文献求助10
10秒前
可爱的函函应助qingxiao采纳,获得10
11秒前
上官若男应助叶子采纳,获得10
11秒前
ding应助碧蓝的初南采纳,获得10
11秒前
隔壁家完成签到,获得积分10
12秒前
13秒前
13秒前
谨慎不二完成签到,获得积分20
15秒前
李健应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
桐桐应助wa_wa_wa采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
5515713完成签到,获得积分10
17秒前
柯擎汉完成签到,获得积分10
18秒前
AptRank完成签到,获得积分10
19秒前
Owen应助欢呼宛白采纳,获得10
19秒前
19秒前
谨慎乌完成签到,获得积分10
25秒前
领导范儿应助nanyuan123采纳,获得30
26秒前
nonkul发布了新的文献求助10
27秒前
打打应助执着的若灵采纳,获得10
27秒前
在水一方应助美丽的听白采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328