The life cycle of large language models in education: A framework for understanding sources of bias

计算机科学 心理学
作者
Jinsook Lee,Yann Hicke,Renzhe Yu,Christopher Brooks,René F. Kizilcec
出处
期刊:British Journal of Educational Technology [Wiley]
卷期号:55 (5): 1982-2002 被引量:32
标识
DOI:10.1111/bjet.13505
摘要

Abstract Large language models (LLMs) are increasingly adopted in educational contexts to provide personalized support to students and teachers. The unprecedented capacity of LLM‐based applications to understand and generate natural language can potentially improve instructional effectiveness and learning outcomes, but the integration of LLMs in education technology has renewed concerns over algorithmic bias, which may exacerbate educational inequalities. Building on prior work that mapped the traditional machine learning life cycle, we provide a framework of the LLM life cycle from the initial development of LLMs to customizing pre‐trained models for various applications in educational settings. We explain each step in the LLM life cycle and identify potential sources of bias that may arise in the context of education. We discuss why current measures of bias from traditional machine learning fail to transfer to LLM‐generated text (eg, tutoring conversations) because text encodings are high‐dimensional, there can be multiple correct responses, and tailoring responses may be pedagogically desirable rather than unfair. The proposed framework clarifies the complex nature of bias in LLM applications and provides practical guidance for their evaluation to promote educational equity. Practitioner notes What is already known about this topic The life cycle of traditional machine learning (ML) applications which focus on predicting labels is well understood. Biases are known to enter in traditional ML applications at various points in the life cycle, and methods to measure and mitigate these biases have been developed and tested. Large language models (LLMs) and other forms of generative artificial intelligence (GenAI) are increasingly adopted in education technologies (EdTech), but current evaluation approaches are not specific to the domain of education. What this paper adds A holistic perspective of the LLM life cycle with domain‐specific examples in education to highlight opportunities and challenges for incorporating natural language understanding (NLU) and natural language generation (NLG) into EdTech. Potential sources of bias are identified in each step of the LLM life cycle and discussed in the context of education. A framework for understanding where to expect potential harms of LLMs for students, teachers, and other users of GenAI technology in education, which can guide approaches to bias measurement and mitigation. Implications for practice and/or policy Education practitioners and policymakers should be aware that biases can originate from a multitude of steps in the LLM life cycle, and the life cycle perspective offers them a heuristic for asking technology developers to explain each step to assess the risk of bias. Measuring the biases of systems that use LLMs in education is more complex than with traditional ML, in large part because the evaluation of natural language generation is highly context‐dependent (eg, what counts as good feedback on an assignment varies). EdTech developers can play an important role in collecting and curating datasets for the evaluation and benchmarking of LLM applications moving forward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的紫易完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
顾南衣发布了新的文献求助10
2秒前
uiui完成签到,获得积分10
2秒前
李健应助药神L采纳,获得10
4秒前
Cici的新长征完成签到 ,获得积分10
4秒前
Genius发布了新的文献求助10
4秒前
追寻的夏波应助obito采纳,获得10
5秒前
科研通AI6应助周周周采纳,获得10
5秒前
7秒前
木木杨完成签到,获得积分10
8秒前
潇洒的冰淇淋完成签到,获得积分10
8秒前
9秒前
zzzzzzzzzzzz发布了新的文献求助10
9秒前
9秒前
Akim应助HUYAOWEI采纳,获得10
9秒前
无极微光应助HUYAOWEI采纳,获得20
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
深情的新儿完成签到,获得积分10
12秒前
虚幻的芷珊完成签到,获得积分10
13秒前
clio完成签到,获得积分10
13秒前
ri_290发布了新的文献求助10
14秒前
14秒前
所所应助耍酷问兰采纳,获得10
14秒前
scuter发布了新的文献求助10
14秒前
15秒前
渺渺发布了新的文献求助10
16秒前
jwjzsznb发布了新的文献求助50
16秒前
16秒前
阳光的衫发布了新的文献求助10
17秒前
爆爆发布了新的文献求助10
17秒前
stop here完成签到,获得积分10
17秒前
bkagyin应助scuter采纳,获得10
19秒前
思源应助Genius采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594302
求助须知:如何正确求助?哪些是违规求助? 4679974
关于积分的说明 14812661
捐赠科研通 4646837
什么是DOI,文献DOI怎么找? 2534882
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469497