Analysis and forecasting of electricity prices using an improved time series ensemble approach: an application to the Peruvian electricity market

电价预测 电力市场 计量经济学 时间序列 电价 系列(地层学) 集合预报 经济 计算机科学 人工智能 工程类 机器学习 古生物学 电气工程 生物
作者
Salvatore Mancha Gonzales,Hasnain Iftikhar,Javier Linkolk López-Gonzales
出处
期刊:AIMS mathematics [American Institute of Mathematical Sciences]
卷期号:9 (8): 21952-21971 被引量:5
标识
DOI:10.3934/math.20241067
摘要

<p>In today's electricity markets, accurate electricity price forecasting provides valuable insights for decision-making among participants, ensuring reliable operation of the power system. However, the complex characteristics of electricity price time series hinder accessibility to accurate price forecasting. This study addressed this challenge by introducing a novel approach to predicting prices in the Peruvian electricity market. This approach involved preprocessing the monthly electricity price time series by addressing missing values, stabilizing variance, normalizing data, achieving stationarity, and addressing seasonality issues. After this, six standard base models were employed to model the time series, followed by applying three ensemble models to forecast the filtered electricity price time series. Comparisons were conducted between the predicted and observed electricity prices using mean error accuracy measures, graphical evaluation, and an equal forecasting accuracy statistical test. The results showed that the proposed novel ensemble forecasting approach was an efficient and accurate tool for forecasting monthly electricity prices in the Peruvian electricity market. Moreover, the ensemble models outperformed the results of earlier studies. Finally, while numerous global studies have been conducted from various perspectives, no analysis has been undertaken using an ensemble learning approach to forecast electricity prices for the Peruvian electricity market.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈佳宜完成签到,获得积分20
1秒前
善学以致用应助少辉采纳,获得10
1秒前
段段发布了新的文献求助10
1秒前
上官若男应助小n采纳,获得10
1秒前
2秒前
可靠的大美完成签到,获得积分10
3秒前
追寻的山晴完成签到,获得积分10
5秒前
研友_VZG7GZ应助医无止境采纳,获得10
5秒前
华仔应助大气的谷梦采纳,获得10
7秒前
无花果应助月月鸟采纳,获得10
7秒前
碧蓝筝发布了新的文献求助10
7秒前
Lucas应助wang采纳,获得10
8秒前
124332发布了新的文献求助10
8秒前
李爱国应助福荔采纳,获得10
8秒前
monere应助太久采纳,获得10
8秒前
小米的稻田完成签到,获得积分10
9秒前
10秒前
10秒前
潇涯发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助云_123采纳,获得10
11秒前
暮封应助一二三采纳,获得10
12秒前
xiaobai完成签到,获得积分10
12秒前
Le发布了新的文献求助10
13秒前
orixero应助狗干采纳,获得10
13秒前
14秒前
14秒前
碧蓝筝完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
16秒前
16秒前
Ahha完成签到 ,获得积分10
16秒前
十二夜的三冬四夏完成签到,获得积分10
16秒前
谢婉婷发布了新的文献求助10
17秒前
17秒前
Akim应助你的男孩DD采纳,获得10
18秒前
顺心的雨真完成签到,获得积分10
18秒前
19秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267228
求助须知:如何正确求助?哪些是违规求助? 2906777
关于积分的说明 8339541
捐赠科研通 2577346
什么是DOI,文献DOI怎么找? 1400891
科研通“疑难数据库(出版商)”最低求助积分说明 654973
邀请新用户注册赠送积分活动 633887