Analysis and forecasting of electricity prices using an improved time series ensemble approach: an application to the Peruvian electricity market

电价预测 电力市场 计量经济学 时间序列 电价 系列(地层学) 集合预报 经济 计算机科学 人工智能 工程类 机器学习 古生物学 电气工程 生物
作者
Salvatore Mancha Gonzales,Hasnain Iftikhar,Javier Linkolk López-Gonzales
出处
期刊:AIMS mathematics [American Institute of Mathematical Sciences]
卷期号:9 (8): 21952-21971 被引量:5
标识
DOI:10.3934/math.20241067
摘要

<p>In today's electricity markets, accurate electricity price forecasting provides valuable insights for decision-making among participants, ensuring reliable operation of the power system. However, the complex characteristics of electricity price time series hinder accessibility to accurate price forecasting. This study addressed this challenge by introducing a novel approach to predicting prices in the Peruvian electricity market. This approach involved preprocessing the monthly electricity price time series by addressing missing values, stabilizing variance, normalizing data, achieving stationarity, and addressing seasonality issues. After this, six standard base models were employed to model the time series, followed by applying three ensemble models to forecast the filtered electricity price time series. Comparisons were conducted between the predicted and observed electricity prices using mean error accuracy measures, graphical evaluation, and an equal forecasting accuracy statistical test. The results showed that the proposed novel ensemble forecasting approach was an efficient and accurate tool for forecasting monthly electricity prices in the Peruvian electricity market. Moreover, the ensemble models outperformed the results of earlier studies. Finally, while numerous global studies have been conducted from various perspectives, no analysis has been undertaken using an ensemble learning approach to forecast electricity prices for the Peruvian electricity market.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzDoctor完成签到,获得积分10
刚刚
高分子完成签到,获得积分10
刚刚
轻松尔蝶完成签到 ,获得积分10
1秒前
Li完成签到,获得积分10
1秒前
自信晟睿完成签到,获得积分10
1秒前
奋斗映寒发布了新的文献求助10
1秒前
Nara2021完成签到,获得积分10
2秒前
Ya完成签到,获得积分10
2秒前
开心的自行车完成签到,获得积分10
2秒前
3秒前
咯噔完成签到,获得积分10
3秒前
啊啊啊啊完成签到,获得积分20
3秒前
拓力库海完成签到,获得积分10
4秒前
曾经可乐完成签到 ,获得积分10
4秒前
WenJun发布了新的文献求助10
4秒前
海绵饱饱发布了新的文献求助30
5秒前
顾矜应助六烃季铵采纳,获得10
5秒前
wu无完成签到,获得积分10
5秒前
5秒前
雪蛋儿完成签到,获得积分10
5秒前
CodeCraft应助yyyq0721采纳,获得10
5秒前
廉不可完成签到,获得积分10
6秒前
Smart应助荣浩宇采纳,获得10
6秒前
翻斗花园葫芦娃完成签到,获得积分10
6秒前
NexusExplorer应助梅川秋裤采纳,获得30
6秒前
Rondab应助yhm1采纳,获得10
7秒前
7秒前
十万大山兵大大完成签到,获得积分10
7秒前
春来完成签到,获得积分10
7秒前
hahaha完成签到,获得积分10
8秒前
xing完成签到,获得积分10
8秒前
309175700@qq.com完成签到,获得积分10
9秒前
华仔应助邓代容采纳,获得10
10秒前
Yao完成签到,获得积分10
10秒前
jovx完成签到 ,获得积分10
10秒前
无聊的不愁完成签到,获得积分10
11秒前
某某完成签到,获得积分10
11秒前
西米露完成签到,获得积分10
11秒前
傻瓜完成签到 ,获得积分10
12秒前
yilin完成签到 ,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044