已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Analysis and forecasting of electricity prices using an improved time series ensemble approach: an application to the Peruvian electricity market

电价预测 电力市场 计量经济学 时间序列 电价 系列(地层学) 集合预报 经济 计算机科学 人工智能 工程类 机器学习 生物 电气工程 古生物学
作者
Salvatore Mancha Gonzales,Hasnain Iftikhar,Javier Linkolk López-Gonzales
出处
期刊:AIMS mathematics [American Institute of Mathematical Sciences]
卷期号:9 (8): 21952-21971 被引量:5
标识
DOI:10.3934/math.20241067
摘要

<p>In today's electricity markets, accurate electricity price forecasting provides valuable insights for decision-making among participants, ensuring reliable operation of the power system. However, the complex characteristics of electricity price time series hinder accessibility to accurate price forecasting. This study addressed this challenge by introducing a novel approach to predicting prices in the Peruvian electricity market. This approach involved preprocessing the monthly electricity price time series by addressing missing values, stabilizing variance, normalizing data, achieving stationarity, and addressing seasonality issues. After this, six standard base models were employed to model the time series, followed by applying three ensemble models to forecast the filtered electricity price time series. Comparisons were conducted between the predicted and observed electricity prices using mean error accuracy measures, graphical evaluation, and an equal forecasting accuracy statistical test. The results showed that the proposed novel ensemble forecasting approach was an efficient and accurate tool for forecasting monthly electricity prices in the Peruvian electricity market. Moreover, the ensemble models outperformed the results of earlier studies. Finally, while numerous global studies have been conducted from various perspectives, no analysis has been undertaken using an ensemble learning approach to forecast electricity prices for the Peruvian electricity market.</p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助伊莱恩采纳,获得10
1秒前
4秒前
5秒前
6秒前
7秒前
渡己。发布了新的文献求助10
8秒前
111完成签到 ,获得积分10
10秒前
CodeCraft应助默默千风采纳,获得10
11秒前
Yuanyuan发布了新的文献求助10
12秒前
HarrisonChan完成签到,获得积分10
13秒前
21秒前
24秒前
vvvvba0202发布了新的文献求助10
27秒前
HE完成签到,获得积分10
27秒前
30秒前
Crisp完成签到 ,获得积分10
33秒前
35秒前
和谐蛋蛋完成签到,获得积分10
36秒前
Owen应助洞两采纳,获得10
37秒前
科研通AI6应助Fuaget采纳,获得10
41秒前
研友_ZGRvon完成签到,获得积分10
41秒前
kk完成签到 ,获得积分10
42秒前
谢谢应助vvvvba0202采纳,获得10
44秒前
沧浪完成签到,获得积分10
51秒前
Dliii完成签到 ,获得积分10
53秒前
55秒前
科研通AI6应助学术小白采纳,获得10
55秒前
刘雨凝完成签到,获得积分10
57秒前
冷静傲丝完成签到 ,获得积分10
1分钟前
洞两发布了新的文献求助10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
1分钟前
大模型应助vvvvba0202采纳,获得10
1分钟前
啦啦啦完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561175
求助须知:如何正确求助?哪些是违规求助? 4646348
关于积分的说明 14678343
捐赠科研通 4587587
什么是DOI,文献DOI怎么找? 2517175
邀请新用户注册赠送积分活动 1490439
关于科研通互助平台的介绍 1461340