已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rolling Bearing Fault Diagnosis Based on CNN-LSTM with FFT and SVD

计算机科学 人工智能 卷积神经网络 支持向量机 模式识别(心理学) 特征提取 快速傅里叶变换 机器学习 算法
作者
Muzi Xu,Qianqian Yu,Shichao Chen,Jianhui Lin
出处
期刊:Information [MDPI AG]
卷期号:15 (7): 399-399 被引量:1
标识
DOI:10.3390/info15070399
摘要

In the industrial sector, accurate fault identification is paramount for ensuring both safety and economic efficiency throughout the production process. However, due to constraints imposed by actual working conditions, the motor state features collected are often limited in number and singular in nature. Consequently, extending and extracting these features pose significant challenges in fault diagnosis. To address this issue and strike a balance between model complexity and diagnostic accuracy, this paper introduces a novel motor fault diagnostic model termed FSCL (Fourier Singular Value Decomposition combined with Long and Short-Term Memory networks). The FSCL model integrates traditional signal analysis algorithms with deep learning techniques to automate feature extraction. This hybrid approach innovatively enhances fault detection by describing, extracting, encoding, and mapping features during offline training. Empirical evaluations against various state-of-the-art techniques such as Bayesian Optimization and Extreme Gradient Boosting Tree (BOA-XGBoost), Whale Optimization Algorithm and Support Vector Machine (WOA-SVM), Short-Time Fourier Transform and Convolutional Neural Networks (STFT-CNNs), and Variational Modal Decomposition-Multi Scale Fuzzy Entropy-Probabilistic Neural Network (VMD-MFE-PNN) demonstrate the superior performance of the FSCL model. Validation using the Case Western Reserve University dataset (CWRU) confirms the efficacy of the proposed technique, achieving an impressive accuracy of 99.32%. Moreover, the model exhibits robustness against noise, maintaining an average precision of 98.88% and demonstrating recall and F1 scores ranging from 99.00% to 99.89%. Even under conditions of severe noise interference, the FSCL model consistently achieves high accuracy in recognizing the motor’s operational state. This study underscores the FSCL model as a promising approach for enhancing motor fault diagnosis in industrial settings, leveraging the synergistic benefits of traditional signal analysis and deep learning methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曾诗婷完成签到 ,获得积分10
1秒前
wys发布了新的文献求助10
2秒前
TTTHANKS发布了新的文献求助10
5秒前
听宇完成签到,获得积分20
5秒前
三号技师完成签到,获得积分10
8秒前
伤心葫芦娃完成签到 ,获得积分10
12秒前
13秒前
星星完成签到,获得积分10
13秒前
泥泞o发布了新的文献求助10
17秒前
领导范儿应助青阳采纳,获得10
17秒前
5160完成签到,获得积分10
19秒前
乐研客完成签到,获得积分10
20秒前
22秒前
星星2完成签到,获得积分10
22秒前
FleeToMars完成签到 ,获得积分10
23秒前
小洁完成签到 ,获得积分10
23秒前
bji完成签到,获得积分10
25秒前
yige完成签到,获得积分10
26秒前
吃草草没完成签到 ,获得积分10
26秒前
28秒前
李晓萌发布了新的文献求助10
28秒前
天宇南神完成签到 ,获得积分10
28秒前
顾矜应助xxhxx采纳,获得10
28秒前
量子星尘发布了新的文献求助10
30秒前
hjc完成签到,获得积分10
33秒前
sailingluwl完成签到,获得积分10
34秒前
36秒前
Rae完成签到 ,获得积分10
38秒前
luster完成签到 ,获得积分10
38秒前
moonlight完成签到,获得积分10
39秒前
天使她男人完成签到,获得积分10
41秒前
小迷糊完成签到 ,获得积分10
41秒前
993494543完成签到,获得积分10
42秒前
43秒前
44秒前
lhq完成签到 ,获得积分10
45秒前
46秒前
Suttier完成签到 ,获得积分10
47秒前
xxhxx发布了新的文献求助10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573190
求助须知:如何正确求助?哪些是违规求助? 4659336
关于积分的说明 14724438
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524140
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704