Rolling Bearing Fault Diagnosis Based on CNN-LSTM with FFT and SVD

计算机科学 人工智能 卷积神经网络 支持向量机 模式识别(心理学) 特征提取 快速傅里叶变换 机器学习 算法
作者
Muzi Xu,Qianqian Yu,Shichao Chen,Jianhui Lin
出处
期刊:Information [MDPI AG]
卷期号:15 (7): 399-399 被引量:1
标识
DOI:10.3390/info15070399
摘要

In the industrial sector, accurate fault identification is paramount for ensuring both safety and economic efficiency throughout the production process. However, due to constraints imposed by actual working conditions, the motor state features collected are often limited in number and singular in nature. Consequently, extending and extracting these features pose significant challenges in fault diagnosis. To address this issue and strike a balance between model complexity and diagnostic accuracy, this paper introduces a novel motor fault diagnostic model termed FSCL (Fourier Singular Value Decomposition combined with Long and Short-Term Memory networks). The FSCL model integrates traditional signal analysis algorithms with deep learning techniques to automate feature extraction. This hybrid approach innovatively enhances fault detection by describing, extracting, encoding, and mapping features during offline training. Empirical evaluations against various state-of-the-art techniques such as Bayesian Optimization and Extreme Gradient Boosting Tree (BOA-XGBoost), Whale Optimization Algorithm and Support Vector Machine (WOA-SVM), Short-Time Fourier Transform and Convolutional Neural Networks (STFT-CNNs), and Variational Modal Decomposition-Multi Scale Fuzzy Entropy-Probabilistic Neural Network (VMD-MFE-PNN) demonstrate the superior performance of the FSCL model. Validation using the Case Western Reserve University dataset (CWRU) confirms the efficacy of the proposed technique, achieving an impressive accuracy of 99.32%. Moreover, the model exhibits robustness against noise, maintaining an average precision of 98.88% and demonstrating recall and F1 scores ranging from 99.00% to 99.89%. Even under conditions of severe noise interference, the FSCL model consistently achieves high accuracy in recognizing the motor’s operational state. This study underscores the FSCL model as a promising approach for enhancing motor fault diagnosis in industrial settings, leveraging the synergistic benefits of traditional signal analysis and deep learning methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wt完成签到,获得积分10
1秒前
444关闭了444文献求助
2秒前
ZYQ完成签到 ,获得积分10
2秒前
苏苏完成签到,获得积分10
3秒前
3秒前
3秒前
高大黄蜂完成签到,获得积分10
4秒前
新青年应助gmc采纳,获得10
4秒前
勤劳落雁发布了新的文献求助10
4秒前
超帅的从菡完成签到 ,获得积分10
4秒前
leena发布了新的文献求助10
4秒前
斯文败类应助Hh采纳,获得10
5秒前
高大黄蜂发布了新的文献求助10
6秒前
英姑应助guygun采纳,获得10
6秒前
Feng完成签到,获得积分10
7秒前
8秒前
花花完成签到,获得积分10
8秒前
一言矣完成签到 ,获得积分10
9秒前
海绵宝宝完成签到,获得积分10
10秒前
贪吃的猴子完成签到,获得积分10
10秒前
long完成签到 ,获得积分10
11秒前
研友_LOqqmZ发布了新的文献求助10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
kilig应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
清心淡如水完成签到,获得积分10
12秒前
Hao应助命运的X号采纳,获得10
13秒前
14秒前
15秒前
哭泣恋风完成签到 ,获得积分10
15秒前
zhizhzihzih完成签到,获得积分10
15秒前
15秒前
2568269431完成签到 ,获得积分10
16秒前
panzer发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824