Rolling Bearing Fault Diagnosis Based on CNN-LSTM with FFT and SVD

计算机科学 人工智能 卷积神经网络 支持向量机 模式识别(心理学) 特征提取 快速傅里叶变换 机器学习 算法
作者
Muzi Xu,Qianqian Yu,Shichao Chen,Jianhui Lin
出处
期刊:Information [MDPI AG]
卷期号:15 (7): 399-399 被引量:1
标识
DOI:10.3390/info15070399
摘要

In the industrial sector, accurate fault identification is paramount for ensuring both safety and economic efficiency throughout the production process. However, due to constraints imposed by actual working conditions, the motor state features collected are often limited in number and singular in nature. Consequently, extending and extracting these features pose significant challenges in fault diagnosis. To address this issue and strike a balance between model complexity and diagnostic accuracy, this paper introduces a novel motor fault diagnostic model termed FSCL (Fourier Singular Value Decomposition combined with Long and Short-Term Memory networks). The FSCL model integrates traditional signal analysis algorithms with deep learning techniques to automate feature extraction. This hybrid approach innovatively enhances fault detection by describing, extracting, encoding, and mapping features during offline training. Empirical evaluations against various state-of-the-art techniques such as Bayesian Optimization and Extreme Gradient Boosting Tree (BOA-XGBoost), Whale Optimization Algorithm and Support Vector Machine (WOA-SVM), Short-Time Fourier Transform and Convolutional Neural Networks (STFT-CNNs), and Variational Modal Decomposition-Multi Scale Fuzzy Entropy-Probabilistic Neural Network (VMD-MFE-PNN) demonstrate the superior performance of the FSCL model. Validation using the Case Western Reserve University dataset (CWRU) confirms the efficacy of the proposed technique, achieving an impressive accuracy of 99.32%. Moreover, the model exhibits robustness against noise, maintaining an average precision of 98.88% and demonstrating recall and F1 scores ranging from 99.00% to 99.89%. Even under conditions of severe noise interference, the FSCL model consistently achieves high accuracy in recognizing the motor’s operational state. This study underscores the FSCL model as a promising approach for enhancing motor fault diagnosis in industrial settings, leveraging the synergistic benefits of traditional signal analysis and deep learning methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还能做什么完成签到,获得积分10
1秒前
pokexuejiao发布了新的文献求助10
3秒前
3秒前
Lee发布了新的文献求助10
4秒前
7秒前
8秒前
CipherSage应助田小姐采纳,获得10
8秒前
orixero应助大意的星星采纳,获得10
9秒前
11秒前
领导范儿应助xiaowang采纳,获得10
12秒前
赘婿应助小心翼翼采纳,获得10
14秒前
道衍先一完成签到,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
HCLonely应助科研通管家采纳,获得10
15秒前
15秒前
YuanbinMao应助科研通管家采纳,获得20
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
HCLonely应助科研通管家采纳,获得10
16秒前
lxy应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
古藤发布了新的文献求助10
16秒前
MP应助hh0采纳,获得30
17秒前
17秒前
小余完成签到 ,获得积分10
21秒前
阿韩完成签到,获得积分10
21秒前
22秒前
22秒前
冷静的仙人掌完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
隐形曼青应助Crazy_Runner采纳,获得10
24秒前
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238141
求助须知:如何正确求助?哪些是违规求助? 2883474
关于积分的说明 8230685
捐赠科研通 2551583
什么是DOI,文献DOI怎么找? 1380064
科研通“疑难数据库(出版商)”最低求助积分说明 648910
邀请新用户注册赠送积分活动 624589