EFS-YOLO: A Lightweight Network Based on Steel Strip Surface Defect Detection

材料科学 曲面(拓扑) 计算机科学 复合材料 数学 几何学
作者
Beilong Chen,Mingjun Wei,Jianuo Liu,Hui Li,Chenxu Dai,Jinyun Liu,Zhanlin Ji
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 116003-116003 被引量:7
标识
DOI:10.1088/1361-6501/ad66fe
摘要

Abstract With the advancement of deep learning technologies, industrial intelligent detection algorithms are gradually being applied in practical steel surface defect detection. Addressing the issues of high computational resource consumption and poor detection performance faced by existing models in large-scale industrial production lines, this paper proposes an EFS-YOLO (Efficient-Fast-Shared-YOLO) model based on improved YOLOv8s architecture. Firstly, the EfficientViT is employed as the feature extraction network, effectively reducing the model’s parameters and calculations while enhancing its capability to represent defect features. Secondly, the designed lightweight C2f-Faster-EffectiveSE Block (CFE-Block) was integrated into the model neck, accelerating feature fusion and better preserving detailed defect features at lower levels. Finally, the model detection head was reconstructed using the concept of shared parameters to address the high computational cost of the original detection head. Experimental results on the NEU-DET and GC10-DET datasets demonstrate that compared to the baseline model, the proposed model achieves a reduction in parameters, calculations and size by 49.5%, 62.7% and 46.9% respectively. It also exhibits an improvement in accuracy by 2.4% and 2.3% on the two datasets. The EFS-YOLO model effectively enhances precision in steel surface defect detection while maintaining lightweight characteristics, offering superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助leslieo3o采纳,获得10
刚刚
3秒前
大个应助从容山兰采纳,获得30
4秒前
无花果应助乐乐采纳,获得10
4秒前
5秒前
5秒前
臻灏发布了新的文献求助10
5秒前
7秒前
666发布了新的文献求助10
7秒前
852应助Lily采纳,获得10
9秒前
悦耳荟完成签到,获得积分20
9秒前
11秒前
虎头怪发布了新的文献求助30
13秒前
MORNING发布了新的文献求助10
13秒前
Lh6610完成签到,获得积分0
13秒前
慧灰huihui发布了新的文献求助10
13秒前
14秒前
JamesPei应助笑点低的丹烟采纳,获得10
14秒前
权志龙完成签到,获得积分10
14秒前
赘婿应助臻灏采纳,获得10
15秒前
科目三应助Rita采纳,获得10
16秒前
lu完成签到,获得积分10
18秒前
上官若男应助寒冷的依凝采纳,获得10
19秒前
19秒前
19秒前
22秒前
24秒前
24秒前
27秒前
28秒前
懒于起名发布了新的文献求助30
28秒前
yqcsyyds完成签到,获得积分10
30秒前
浮笙完成签到 ,获得积分10
31秒前
lll发布了新的文献求助10
32秒前
VERY发布了新的文献求助10
32秒前
二月完成签到,获得积分10
32秒前
Tissl完成签到,获得积分10
33秒前
33秒前
LXH关闭了LXH文献求助
34秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303