EFS-YOLO: A Lightweight Network Based on Steel Strip Surface Defect Detection

材料科学 曲面(拓扑) 计算机科学 复合材料 数学 几何学
作者
Beilong Chen,Mingjun Wei,Jianuo Liu,Hui Li,Chenxu Dai,Jinyun Liu,Zhanlin Ji
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 116003-116003 被引量:15
标识
DOI:10.1088/1361-6501/ad66fe
摘要

Abstract With the advancement of deep learning technologies, industrial intelligent detection algorithms are gradually being applied in practical steel surface defect detection. Addressing the issues of high computational resource consumption and poor detection performance faced by existing models in large-scale industrial production lines, this paper proposes an EFS-YOLO (Efficient-Fast-Shared-YOLO) model based on improved YOLOv8s architecture. Firstly, the EfficientViT is employed as the feature extraction network, effectively reducing the model’s parameters and calculations while enhancing its capability to represent defect features. Secondly, the designed lightweight C2f-Faster-EffectiveSE Block (CFE-Block) was integrated into the model neck, accelerating feature fusion and better preserving detailed defect features at lower levels. Finally, the model detection head was reconstructed using the concept of shared parameters to address the high computational cost of the original detection head. Experimental results on the NEU-DET and GC10-DET datasets demonstrate that compared to the baseline model, the proposed model achieves a reduction in parameters, calculations and size by 49.5%, 62.7% and 46.9% respectively. It also exhibits an improvement in accuracy by 2.4% and 2.3% on the two datasets. The EFS-YOLO model effectively enhances precision in steel surface defect detection while maintaining lightweight characteristics, offering superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bbyambix发布了新的文献求助10
1秒前
哈哈哈哈哈哈完成签到,获得积分10
1秒前
1秒前
farewell发布了新的文献求助10
1秒前
2秒前
619026854发布了新的文献求助10
3秒前
3秒前
李爱国应助Jenny采纳,获得20
4秒前
ericssong发布了新的文献求助10
4秒前
Keira_Chang完成签到,获得积分10
4秒前
5秒前
温暖的问候完成签到,获得积分10
5秒前
酷波er应助寻悦采纳,获得10
6秒前
欢呼的棒棒糖完成签到,获得积分10
7秒前
Vvvnnnaa1发布了新的文献求助10
7秒前
一生总发布了新的文献求助10
7秒前
甜甜甜发布了新的文献求助20
8秒前
8秒前
9秒前
9秒前
欣喜的饼干完成签到,获得积分10
9秒前
10秒前
霸气的冰旋完成签到 ,获得积分10
10秒前
欢呼紫菜完成签到,获得积分10
11秒前
12秒前
CATH完成签到 ,获得积分10
12秒前
12秒前
FashionBoy应助卜凡采纳,获得10
13秒前
13秒前
暮沐晓光完成签到,获得积分10
14秒前
共享精神应助Vvvnnnaa1采纳,获得10
14秒前
14秒前
核桃发布了新的文献求助30
15秒前
刘畅完成签到,获得积分20
15秒前
无限不尤发布了新的文献求助10
15秒前
16秒前
chenfeng2163发布了新的文献求助10
16秒前
思妍发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305259
求助须知:如何正确求助?哪些是违规求助? 4451472
关于积分的说明 13852140
捐赠科研通 4338857
什么是DOI,文献DOI怎么找? 2382237
邀请新用户注册赠送积分活动 1377329
关于科研通互助平台的介绍 1344719