Multimodal fusion network for ICU patient outcome prediction

计算机科学 模式 人工智能 杠杆(统计) 机器学习 成对比较 编码器 模态(人机交互) 数据挖掘 社会科学 社会学 操作系统
作者
Chutong Wang,Xuebing Yang,Mengxuan Sun,Yifan Gu,Jinghao Niu,Wensheng Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:180: 106672-106672
标识
DOI:10.1016/j.neunet.2024.106672
摘要

Over the past decades, massive Electronic Health Records (EHRs) have been accumulated in Intensive Care Unit (ICU) and many other healthcare scenarios. The rich and comprehensive information recorded presents an exceptional opportunity for patient outcome predictions. Nevertheless, due to the diversity of data modalities, EHRs exhibit a heterogeneous characteristic, raising a difficulty to organically leverage information from various modalities. It is an urgent need to capture the underlying correlations among different modalities. In this paper, we propose a novel framework named Multimodal Fusion Network (MFNet) for ICU patient outcome prediction. First, we incorporate multiple modality-specific encoders to learn different modality representations. Notably, a graph guided encoder is designed to capture underlying global relationships among medical codes, and a text encoder with pre-fine-tuning strategy is adopted to extract appropriate text representations. Second, we propose to pairwise merge multimodal representations with a tailored hierarchical fusion mechanism. The experiments conducted on the eICU-CRD dataset validate that MFNet achieves superior performance on mortality prediction and Length of Stay (LoS) prediction compared with various representative and state-of-the-art baselines. Moreover, comprehensive ablation study demonstrates the effectiveness of each component of MFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yangyang发布了新的文献求助10
1秒前
冷酷尔琴完成签到,获得积分10
1秒前
科研通AI5应助aaaaaa采纳,获得10
1秒前
顾矜应助清脆的台灯采纳,获得10
2秒前
单薄凌蝶发布了新的文献求助50
2秒前
2秒前
羊羊爱吃羊羊完成签到 ,获得积分10
3秒前
3秒前
Akim应助BOSSJING采纳,获得10
3秒前
纸上彩虹发布了新的文献求助10
4秒前
volzzz完成签到,获得积分10
4秒前
4秒前
大胆砖头完成签到 ,获得积分10
4秒前
小蘑菇应助强健的月饼采纳,获得10
5秒前
5秒前
神揽星辰入梦完成签到,获得积分10
5秒前
吾日三省吾身完成签到 ,获得积分10
5秒前
自爱悠然完成签到,获得积分10
6秒前
6秒前
7秒前
呆瓜完成签到,获得积分10
8秒前
布丁完成签到,获得积分10
8秒前
朴素的士晋完成签到,获得积分10
8秒前
燕尔蓝发布了新的文献求助10
8秒前
我是王浩腾我是健身王完成签到,获得积分10
9秒前
9秒前
杰克李李发布了新的文献求助10
9秒前
wjs0406发布了新的文献求助10
9秒前
老李完成签到,获得积分10
9秒前
落寞寒荷完成签到,获得积分10
10秒前
fly the bike应助莉莉采纳,获得10
10秒前
拟拟发布了新的文献求助10
11秒前
Bo发布了新的文献求助10
11秒前
LCC完成签到 ,获得积分10
11秒前
南乔完成签到,获得积分10
12秒前
yangyang完成签到,获得积分10
12秒前
13秒前
钟是一梦完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740