HPR-Mul: An Area and Energy-Efficient High-Precision Redundancy Multiplier by Approximate Computing

计算机科学 乘数(经济学) 冗余(工程) 计算机工程 经济 操作系统 宏观经济学
作者
Jafar Vafaei,Omid Akbari
出处
期刊:IEEE Transactions on Very Large Scale Integration Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (11): 2012-2022
标识
DOI:10.1109/tvlsi.2024.3445108
摘要

For critical applications that require a higher level of reliability, the Triple Modular Redundancy (TMR) scheme is usually employed to implement fault-tolerant arithmetic units. However, this method imposes a significant area and power/energy overhead. Also, the majority-based voter in the typical TMR designs is highly sensitive to soft errors and the design diversity of the triplicated module, which may result in an error for a small difference between the output of the TMR modules. However, a wide range of applications deployed in critical systems are inherently error-resilient, i.e., they can tolerate some inexact results at their output while having a given level of reliability. In this paper, we propose a High Precision Redundancy Multiplier (HPR-Mul) that relies on the principles of approximate computing to achieve higher energy efficiency and lower area, as well as resolve the aforementioned challenges of the typical TMR schemes, while retaining the required level of reliability. The HPR-Mul is composed of full precision (FP) and two reduced precision (RP) multipliers, along with a simple voter to determine the output. Unlike the state-of-the-art Reduced Precision Redundancy multipliers (RPR-Mul) that require a complex voter, the voter of the proposed HPR-Mul is designed based on mathematical formulas resulting in a simpler structure. Furthermore, we use the intermediate signals of the FP multiplier as the inputs of the RP multipliers, which significantly enhance the accuracy of the HPR-Mul. The efficiency of the proposed HPR-Mul is evaluated in a 15-nm FinFET technology, where the results show up to 70% and 69% lower power consumption and area, respectively, compared to the typical TMR-based multipliers. Also, the HPR-Mul outperforms the state-of-the-art RPR-Mul by achieving up to 84% higher soft error tolerance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaa完成签到,获得积分10
1秒前
淀粉肠完成签到 ,获得积分10
1秒前
sunflower完成签到,获得积分0
1秒前
酶来研去完成签到,获得积分10
2秒前
铜泰妍完成签到 ,获得积分10
2秒前
淡然的花卷完成签到,获得积分10
3秒前
nekoleaf发布了新的文献求助10
4秒前
冷萃咖啡完成签到,获得积分10
4秒前
h7nho发布了新的文献求助20
4秒前
蒹葭苍苍发布了新的文献求助10
4秒前
咖啡八块八完成签到,获得积分10
5秒前
5秒前
我住隔壁我姓王完成签到,获得积分10
5秒前
布谷完成签到,获得积分10
5秒前
5秒前
5秒前
无医发布了新的文献求助10
6秒前
6秒前
Jio-PPx发布了新的文献求助10
7秒前
Sir.夏季风完成签到,获得积分10
7秒前
王开晙完成签到,获得积分10
7秒前
小狐狸完成签到,获得积分10
7秒前
忧虑的鹭洋完成签到,获得积分10
8秒前
8秒前
wuta完成签到,获得积分10
8秒前
JamesPei应助YW采纳,获得10
8秒前
Shauna完成签到,获得积分10
8秒前
LYSnow7完成签到 ,获得积分10
9秒前
9秒前
岁月浪翻了完成签到,获得积分10
9秒前
广州南完成签到 ,获得积分10
9秒前
bao完成签到,获得积分10
9秒前
万能图书馆应助aktuell采纳,获得10
9秒前
生动茹妖完成签到,获得积分10
9秒前
嘻嘻印完成签到,获得积分10
10秒前
向阳完成签到,获得积分10
10秒前
爱吃冬瓜完成签到,获得积分10
10秒前
Ygy发布了新的文献求助10
10秒前
MchemG应助xzy998采纳,获得20
10秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044