HPR-Mul: An Area and Energy-Efficient High-Precision Redundancy Multiplier by Approximate Computing

计算机科学 乘数(经济学) 冗余(工程) 计算机工程 经济 操作系统 宏观经济学
作者
Jafar Vafaei,Omid Akbari
出处
期刊:IEEE Transactions on Very Large Scale Integration Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (11): 2012-2022
标识
DOI:10.1109/tvlsi.2024.3445108
摘要

For critical applications that require a higher level of reliability, the Triple Modular Redundancy (TMR) scheme is usually employed to implement fault-tolerant arithmetic units. However, this method imposes a significant area and power/energy overhead. Also, the majority-based voter in the typical TMR designs is highly sensitive to soft errors and the design diversity of the triplicated module, which may result in an error for a small difference between the output of the TMR modules. However, a wide range of applications deployed in critical systems are inherently error-resilient, i.e., they can tolerate some inexact results at their output while having a given level of reliability. In this paper, we propose a High Precision Redundancy Multiplier (HPR-Mul) that relies on the principles of approximate computing to achieve higher energy efficiency and lower area, as well as resolve the aforementioned challenges of the typical TMR schemes, while retaining the required level of reliability. The HPR-Mul is composed of full precision (FP) and two reduced precision (RP) multipliers, along with a simple voter to determine the output. Unlike the state-of-the-art Reduced Precision Redundancy multipliers (RPR-Mul) that require a complex voter, the voter of the proposed HPR-Mul is designed based on mathematical formulas resulting in a simpler structure. Furthermore, we use the intermediate signals of the FP multiplier as the inputs of the RP multipliers, which significantly enhance the accuracy of the HPR-Mul. The efficiency of the proposed HPR-Mul is evaluated in a 15-nm FinFET technology, where the results show up to 70% and 69% lower power consumption and area, respectively, compared to the typical TMR-based multipliers. Also, the HPR-Mul outperforms the state-of-the-art RPR-Mul by achieving up to 84% higher soft error tolerance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yzy发布了新的文献求助10
刚刚
aafrr完成签到 ,获得积分10
刚刚
gdh发布了新的文献求助50
1秒前
Night完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
战钺蟠龙发布了新的文献求助10
1秒前
英姑应助baiyufengsheng采纳,获得10
2秒前
2秒前
2秒前
ari发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
3秒前
沉着的芦丁完成签到 ,获得积分10
3秒前
林杨完成签到,获得积分10
4秒前
CJJJ完成签到,获得积分10
4秒前
清风朗月发布了新的文献求助10
5秒前
aa完成签到,获得积分10
5秒前
111发布了新的文献求助10
5秒前
5秒前
关键词发布了新的文献求助10
5秒前
5秒前
es完成签到,获得积分10
5秒前
无语的代亦关注了科研通微信公众号
6秒前
zxe发布了新的文献求助100
6秒前
YifanWang应助加菲丰丰采纳,获得10
6秒前
NXK发布了新的文献求助10
6秒前
6秒前
7秒前
孤单的您发布了新的文献求助20
7秒前
香蕉觅云应助杨杨采纳,获得10
7秒前
赶紧毕业完成签到,获得积分10
7秒前
斯文败类应助HCT采纳,获得30
7秒前
8秒前
吴未完成签到,获得积分10
9秒前
aaa发布了新的文献求助20
9秒前
9秒前
石头发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919