已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Brain-wide dynamics linking sensation to action during decision-making

感觉系统 神经科学 运动前皮质 感知 动作(物理) 心理学 认知心理学 任务(项目管理) 计算机科学 生物 量子力学 解剖 物理 经济 管理
作者
Andrei Khilkevich,Michael Lohse,Ryan Low,Ivana Oršolić,Tadej Božič,Paige Windmill,Thomas D. Mrsic‐Flogel
出处
期刊:Nature [Springer Nature]
标识
DOI:10.1038/s41586-024-07908-w
摘要

Abstract Perceptual decisions rely on learned associations between sensory evidence and appropriate actions, involving the filtering and integration of relevant inputs to prepare and execute timely responses 1,2 . Despite the distributed nature of task-relevant representations 3–10 , it remains unclear how transformations between sensory input, evidence integration, motor planning and execution are orchestrated across brain areas and dimensions of neural activity. Here we addressed this question by recording brain-wide neural activity in mice learning to report changes in ambiguous visual input. After learning, evidence integration emerged across most brain areas in sparse neural populations that drive movement-preparatory activity. Visual responses evolved from transient activations in sensory areas to sustained representations in frontal-motor cortex, thalamus, basal ganglia, midbrain and cerebellum, enabling parallel evidence accumulation. In areas that accumulate evidence, shared population activity patterns encode visual evidence and movement preparation, distinct from movement-execution dynamics. Activity in movement-preparatory subspace is driven by neurons integrating evidence, which collapses at movement onset, allowing the integration process to reset. Across premotor regions, evidence-integration timescales were independent of intrinsic regional dynamics, and thus depended on task experience. In summary, learning aligns evidence accumulation to action preparation in activity dynamics across dozens of brain regions. This leads to highly distributed and parallelized sensorimotor transformations during decision-making. Our work unifies concepts from decision-making and motor control fields into a brain-wide framework for understanding how sensory evidence controls actions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好依瑶完成签到,获得积分10
刚刚
隐形曼青应助Beracah采纳,获得10
刚刚
2秒前
tang应助贝贝采纳,获得10
2秒前
美好依瑶发布了新的文献求助10
3秒前
充电宝应助年年年年采纳,获得10
4秒前
无尘发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
7秒前
7秒前
7秒前
8R60d8应助科研通管家采纳,获得20
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得30
8秒前
清爽难胜发布了新的文献求助10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
YifanWang应助科研通管家采纳,获得10
8秒前
8秒前
轨迹应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
Aurora完成签到 ,获得积分10
9秒前
邱雪辉完成签到,获得积分10
9秒前
江浔卿完成签到 ,获得积分10
9秒前
10秒前
10秒前
小包子发布了新的文献求助10
10秒前
早早早完成签到,获得积分10
11秒前
11秒前
12秒前
Aimee发布了新的文献求助10
12秒前
13秒前
害羞的夏柳完成签到,获得积分10
13秒前
Beracah发布了新的文献求助10
14秒前
15秒前
Ava应助fancy采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938