Research on Multimodal Prediction of E-Commerce Customer Satisfaction Driven by Big Data

大数据 计算机科学 顾客满意度 人工智能 多式联运 芯(光纤) 机器学习 产品(数学) 深度学习 数据科学 数据挖掘 营销 业务 数学 几何学 电信
作者
Xiaodong Zhang,Chunrong Guo
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (18): 8181-8181 被引量:1
标识
DOI:10.3390/app14188181
摘要

This study deeply integrates multimodal data analysis and big data technology, proposing a multimodal learning framework that consolidates various information sources, such as user geographic location, behavior data, and product attributes, to achieve a more comprehensive understanding and prediction of consumer behavior. By comparing the performance of unimodal and multimodal approaches in handling complex cross-border e-commerce data, it was found that multimodal learning models using the Adam optimizer significantly outperformed traditional unimodal learning models in terms of prediction accuracy and loss rate. The improvements were particularly notable in training loss and testing accuracy. This demonstrates the efficiency and superiority of multimodal methods in capturing and analyzing heterogeneous data. Furthermore, the study explores and validates the potential of big data and multimodal learning methods to enhance customer satisfaction in the cross-border e-commerce environment. Based on the core findings, specific applications of big data technology in cross-border e-commerce operations were further explored. A series of innovative strategies aimed at improving operational efficiency, enhancing consumer satisfaction, and increasing global market competitiveness were proposed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
Jared应助科研小菜采纳,获得10
2秒前
3719left发布了新的文献求助10
4秒前
sk完成签到,获得积分10
4秒前
5秒前
6秒前
abu发布了新的文献求助10
6秒前
6秒前
zhangwe发布了新的文献求助10
6秒前
NexusExplorer应助秀儿采纳,获得10
6秒前
麻辣烫加麻加辣完成签到 ,获得积分20
7秒前
等待若魔发布了新的文献求助10
7秒前
orixero应助高屋建瓴采纳,获得10
9秒前
cathy完成签到 ,获得积分10
10秒前
tscclm完成签到,获得积分20
10秒前
打打应助壹米采纳,获得10
10秒前
zitong完成签到,获得积分10
10秒前
星沉静默发布了新的文献求助10
11秒前
科研通AI6应助CYPCYP采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
qlx发布了新的文献求助10
12秒前
惊艳发布了新的文献求助40
13秒前
14秒前
ding应助貔貅采纳,获得10
15秒前
可靠雪雪发布了新的文献求助10
16秒前
丘比特应助abu采纳,获得10
16秒前
17秒前
star应助zhangwe采纳,获得10
17秒前
18秒前
21秒前
雷培发布了新的文献求助10
22秒前
灿灿完成签到 ,获得积分10
22秒前
24秒前
24秒前
刘敏123456完成签到,获得积分20
25秒前
25秒前
等待若魔完成签到,获得积分10
26秒前
Peyton Why发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937