Self-Supervised Learning for Generic Raman Spectrum Denoising

化学 拉曼光谱 模式识别(心理学) 人工智能 光学 计算机科学 物理
作者
Siyi Wu,Yumin Zhang,Chang He,Zhewen Luo,Zhou Chen,Jian Ye
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (44): 17476-17485 被引量:2
标识
DOI:10.1021/acs.analchem.4c01550
摘要

Raman and surface-enhanced Raman scattering (SERS) spectroscopy are highly specific and sensitive optical modalities that have been extensively investigated in diverse applications. Noise reduction is demanding in the preprocessing procedure, especially for weak Raman/SERS spectra. Existing denoising methods require manual optimization of parameters, which is time-consuming and laborious and cannot always achieve satisfactory performance. Deep learning has been increasingly applied in Raman/SERS spectral denoising but usually requires massive training data, where the true labels may not exist. Aiming at these challenges, this work presents a generic Raman spectrum denoising algorithm with self-supervised learning for accurate, rapid, and robust noise reduction. A specialized network based on U-Net is established, which first extracts high-level features and then restores key peak profiles of the spectra. A subsampling strategy is proposed to refine the raw Raman spectrum and avoid the underlying biased interference. The effectiveness of the proposed approach has been validated by a broad range of spectral data, exhibiting its strong generalization ability. In the context of photosafe detection of deep-seated tumors, our method achieved signal-to-noise ratio enhancement by over 400%, which resulted in a significant increase in the limit of detection thickness from 10 to 18 cm. Our approach demonstrates superior denoising performance compared to the state-of-the-art denoising methods. The occlusion method further showed that the proposed algorithm automatically focuses on characterized peaks, enhancing the interpretability of our approach explicitly in Raman and SERS spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星葡冰汤圆完成签到 ,获得积分10
1秒前
2秒前
2秒前
Jia关闭了Jia文献求助
2秒前
FashionBoy应助春辞采纳,获得10
2秒前
麋鹿完成签到,获得积分20
3秒前
科研通AI5应助seu_liang采纳,获得30
7秒前
modesty发布了新的文献求助10
7秒前
zzz完成签到,获得积分10
8秒前
科研小崽发布了新的文献求助10
9秒前
9秒前
11秒前
充电宝应助厉2采纳,获得10
12秒前
13秒前
13秒前
科研小崽完成签到,获得积分10
14秒前
春辞发布了新的文献求助10
16秒前
Jasper应助维尼采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
19秒前
荣耀发布了新的文献求助10
19秒前
猪猪hero应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得20
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
19秒前
猪猪hero应助科研通管家采纳,获得10
19秒前
细腻心锁发布了新的文献求助10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
猪猪hero应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
佰斯特威应助科研通管家采纳,获得10
20秒前
猪猪hero应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732774
求助须知:如何正确求助?哪些是违规求助? 3276882
关于积分的说明 9999546
捐赠科研通 2992584
什么是DOI,文献DOI怎么找? 1642340
邀请新用户注册赠送积分活动 780341
科研通“疑难数据库(出版商)”最低求助积分说明 748720