Modulating the Electrical Transport in Superconducting NbC Crystals by Fractal Morphology

材料科学 超导电性 分形 形态学(生物学) 电阻率和电导率 凝聚态物理 纳米技术 电气工程 数学分析 物理 数学 工程类 生物 遗传学
作者
Yunqi Fu,Su Sun,Meng Hao,Qiang Wang,Zhibo Liu,Chuan Xu,Hui‐Ming Cheng,Wencai Ren,Ning Kang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c13602
摘要

The self-similar fractal morphology mediated by nonequilibrium processes is widely observed in low-dimensional materials grown by various techniques. Understanding how these fractal geometries affect the physical and chemical properties of materials and devices is crucial for both fundamental studies and various applications. In particular, the interplay between superconducting phase fluctuations and disorder can give rise to intriguing phenomena depending on the dimensionality. However, current experimental studies on low-dimensional superconductors are limited to two- and one-dimensional systems, leaving fractional dimensional systems largely unexplored. Here, we use chemical vapor deposition to successfully synthesize ultrathin NbC crystals with a well-defined fractal geometry at the nanoscale. By performing electrical transport measurements, we find that both the superconducting and normal-state properties are strongly affected in the fractal samples, where the intrinsic and geometric disorder is induced. In contrast to the 2D crystal, the fractal NbC crystals show a significant low-temperature resistive upturn before the onset of superconducting transition, which can be attributed to the disorder-enhanced electron–electron interaction effect. From transport data analysis, we demonstrate that the superconducting transition in NbC is correlated to the strength of disorder and the fractional dimensions, revealing that nanoscale fractal structures can significantly modify the electronic properties of low-dimensional superconductors. Our work paves the way for the explorations of mesoscopic transport and intriguing superconducting phenomena in fractional dimensions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
尚可完成签到 ,获得积分10
刚刚
赖道之发布了新的文献求助10
1秒前
完美世界应助yuan采纳,获得10
1秒前
丘比特应助bluer采纳,获得10
1秒前
好运来发布了新的文献求助10
1秒前
榕俊完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
卡卡发布了新的文献求助10
2秒前
zouzou完成签到,获得积分10
3秒前
3秒前
CodeCraft应助FFF采纳,获得10
4秒前
冰河完成签到,获得积分10
4秒前
4秒前
领导范儿应助鱼雷采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
22发布了新的文献求助10
5秒前
5秒前
思源应助科研通管家采纳,获得30
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
可达燊应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
Leif应助科研通管家采纳,获得10
6秒前
shouyu29应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762